• Title/Summary/Keyword: biological removal

Search Result 1,294, Processing Time 0.029 seconds

M-dephanox Process with Rotating Biological Contactor (RBC) in Nitirification Reactor (회전원판형 질화조를 이용한 M-dephanox 공정)

  • Kim, Keum-Yong;Kang, Min-Koo;Shin, Gwan-Woo;Kang, Jung-Kyu;Shin, Min-Su;Kang, Han-Sol;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • This study was focused on improving nitrification efficiencies of M-dephanox (Modified-Dephanox) process. Rotating biological contactor (RBC) was used instead of floating sponge type media in nitrification reactor. High ammonia removal efficiencies were observed in nitrification reactor, regardless of organic loading from contactor of M-dephanox process. Denitrification efficiencies were also increased to maintain low $NO_3-N$ concentration in effluent. This enhanced phosphate release in anaerobic contactor and resulted in high removal efficiencies of phophorus. Average removal efficiencies of $TCOD_{Cr}$ and $SCOD_{Cr}$ were 93.8% and 81.6%, respectively, while those of TKN and ${NH_4}^+-N$ were 80.9% and 74.4%, respectively. As for phosphorous treatment, the average removal efficiencies of TP and OP were 94.7% and 94.3%, respectively. Also, effect of operating temperature on nitrogen removal was examined. Average removal efficiency of TN was 65.8 % at $15^{\circ}C$ or below (at average temperature of $13.3^{\circ}C$), while that was 82.8% at $15^{\circ}C$ or above (at average temperature of $21.9^{\circ}C$).

A Study on the Organic, Nitrogen and Phosphorus Removal in (AO)$_2$ SBR and $A_2O$ SBR ((AO)$_2,$ SBR과 $A_2O$ SBR의 유기물, 질소 및 인의 제거에 관한 연구)

  • Park Young-Seek;Woo Hyung-Taek;Kim Dong-Seog
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.340-348
    • /
    • 2005
  • Laboratory scale experiments were conducted to compare the performance of two types of sequencing batch reactor(SBR) systems, anoxic-oxic-anoxic-oxic $((AO)_2)$ SBR and anoxic-oxic-anoxic $(A_2O)$ SBR on the biological nitrogen and phosphorus removal. Also, the profiles of DO and pH in reactors were used to monitor the biological nutrient removal in two SBRs. The break point in the pH and DO curves at the oxic period coincided with the end of nitrifying activity at about 1 h 30 min in oxic phase, and the change in pH appears to be related to nitrate concentration. The TOC removal efficiency in $A_2O$ SBR was higher than that in $(AO)_2$ SBR. The denitrification was completed at the influent period. The 2nd non-aeration and aeration periods were not necessary for the nitrogen and phosphorus removal because of the low influent TOC concentration in this study. The release and uptake of phosphorus in $AO_2$ SBR was much higher than that in $(AO)_2SBR.$ In order to uptake more phosphorus, the 1st aeration period in $A_2O$ SBR should be prolonged.

A Comparison of Nutrient Removal Characteristics between (AO)2 SBBR and A2O SBBR ((AO)2 SBBR과 A2O SBBR에서 영양염류 제거 특성 비교)

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.444-450
    • /
    • 2006
  • This study was carried out to compare the performance of two types of sequencing batch biofilm reactors (SBBRs), anoxic-oxic-anoxic-oxic $(AO)_2$ SBBR and anoxic-oxic-anoxic $A_2O$ SBBR, on the biological nutrient removal. The TOC removal efficiency in $A_2O$ SBBR was higher than that in $(AO)_2$ SBBR. At the 1st non-aeration period, the release of ${PO_4}^{3-}-P$ in $A_2O$ SBBR was higher than that in $(AO)_2$ SBBR because of the high TOC removal. At the 1st aeration-period, the nitrification was not completed in $(AO)_2$ SBBR, however, it was completed in $A_2O$ SBBR and the nitrification rate in $A_2O$ SBBR was higher than that in $(AO)_2$ SBBR. The release and uptake of ${PO_4}^{3-}-P$ in $A_2O$ SBBR was much higher than in $(AO)_2$ SBBR. Also, the profiles of DO and pH in reactors were used to monitor the biological nutrient removal in two SBBRs. The break point in DO and pH curves at the aeration period coincided with the end of nitrification.

Fate and mass balance of pharmaceuticals of unit processes in a sewage treatment plant (하수처리시설 단위공정별 잔류의약물질 거동 및 물질수지 분석)

  • Park, Junwon;Kim, Changsoo;Lee, Wonseok;Lee, Soo-Hyung;Chung, Hyenmi;Jeong, Dong-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.367-377
    • /
    • 2019
  • In this study, the fate and removal of 15 pharmaceuticals (including stimulants, non-steroidal anti-inflammatory drugs, antibiotics, etc.) in unit processes of a sewage treatment plant (STP) were investigated. Mass loads of pharmaceuticals were 2,598 g/d in the influent, 2,745 g/d in the primary effluent, 143 g/d in the secondary effluent, and 134 g/d in the effluent. The mass loads were reduced by 95% in the biological treatment process, but total phosphorous treatment did not show a significant effect on the removal of most pharmaceuticals. Also, mass balance analysis was performed to evaluate removal characteristics of pharmaceuticals in the biological treatment process. Acetaminophen, caffeine, acetylsalicylic acid, cefradine, and naproxen were efficiently removed in the biological treatment process mainly due to biodegradation. Removal efficiencies of gemfibrozil, ofloxacin, and ciprofloxacin were not high, but their removal was related to sorption onto sludge. This study provides useful information on understanding removal characteristics of pharmaceuticals in unit processes in the STP.

Application of Ozone Oxidation to Reduce the Biological Treatment Time of Petrochemical Wastewater (석유화학 폐수의 생물학적 처리시간 단축을 위한 오존 산화의 적용)

  • Hong, Eun-Sik;Kim, Hyun-Suk;Lee, Sang-Hee;Chung, Jin-Suk;Shin, Eun-Woo;Ryu, Keun-Garp;Yoo, Ik-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.573-576
    • /
    • 2006
  • The efficacy of integrated ozone oxidation-biodegradation treatment was examined in the treatment of petrochemical wastewater with a special focus on the overall treatment time. When raw wastewater with chemical oxygen demand(COD) of 70-80 mg/L was oxidized by ozone, approximately 20% of initial COD was removed in less than 1.5 min at a dosing rate of 400 mg $O_3/L{\cdot}h $. No further decrease in COD was observed for the extended ozone treatment up to 30 min. Biological treatment alone showed a rapid reduction of COD to 40-50 mg/L, subsequently resulting in the decreased rate of COD removal. Pre-treatment by ozone before biological treatment did not significantly affect the specific rate of COD removal in a biological treatment. When ozone oxidation followed biological treatment, the extent of COD removal by ozone oxidation was greater compared to that of biologically-treated wastewater for a shorter time. Taken together, it was decided that the biological treatment time could be reduced if the treatment processes of concern will be properly arranged.

Removal of NOM Using Biological Rope Media Sedimentation Tank (로프형 미생물 담체 침전조를 이용한 상수원수중의 NOM 제거)

  • 심상준;강연석;김우식;박대원
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.332-336
    • /
    • 2001
  • This paper is intended as an application of the biological rope media sedimentation tank using biodegradability of BAC(Biological activated carbon) to the drinking water treatment system for the removal of NOM. The removal of DOC(Dissolved organic carbon), UV absorbance(UV$\_$254/), and turbidity were evaluated under various operation condition of a biological rope media sedimentation tank such as raw water-media process (Media 1), ozonation-media process (Media 2), and ozonation-coagulation/sedimentation-media process (Media 3). The raw water had DOC concentration of 1.3∼3.4 mg/L, UV$\_$254/ of 0.027∼0.039 cm$\^$-1/, and turbidity of 0.3∼4.5 NTU, respectively. The average DOC concentration were 2.2 mg/L in media 1, 1.8 mg/L in media 2, and 1.3 mg/l in media 3 from raw water, respectively. On the other hand, the DOC concentration in conventional sedimentation tank was 1.5 mg/l. Higher removal of the DOC was noted in media 3 than media 1 and media 2. The UV$\_$254/ of the treated water were 0.037 cm$\^$-1/ in media 1, 0.027 cm$\^$-1/ in media 2, and 0.014 cm$\^$-1/ in media 3 from raw water, respectively The UV$\_$254/ in conventional sedimentation tank was 0.014 cm$\^$-1/ which is similar to that of media 3. Average turbidity of the treated water was 1.1 NTU in media 1, 0.9 NTU in media 2, and 0.5 NTU in media 3, respectively. It is expected that the biological rope media sedimentation tank is a good alternative over the conventional sedimentation process from these results.

  • PDF

Selection of Biofilter Support for Removing MEK (MEK 제거를 위한 바이오필터용 담체의 선택)

  • Jeong Gwi-Taek;Lee Gwang-Yeon;Lee Kyoung-Min;Sunwoo Chang-Shin;Lee Woo-Tae;Jung Seong-Ho;Cha Jin-Myoung;Jang Young-Seon;Park Don-Hee
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.34-41
    • /
    • 2006
  • The aim of this study is the development of biological removal process of methyl ethyl ketone (MEK) in odor gas, which is generated from the waste food recycling process. To develop the removal process of odor gas, MEK, the selection of proper biofilter support was carried out. When the biofilter equipment was passed by synthetic odor gas composed of 250 ppm of MEK, the maximum removal was achieved to $586.6g-MEK/m^3\;hr$ for polypropylene fibril as support. Under the same experimental conditions, the maximum removal in polyurethane support was obtained to $359.7 g-MEK/m^3\;hr$. Finally, the maximum removal in volcanic stone support was $56.2g-MEK/m^3\;hr$.

Seed-Conjugated Polymer Bead for ${\beta}2$-Microglobulin Removal at Neutral pH

  • Kim, Mi-Ra;Kang, Sung-Soo;Myung, Eun-Kyung;Ahn, Min-Koo;Choi, Jeong-Hyun;Paik, Seung-R.;Lee, Yoon-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.960-965
    • /
    • 2009
  • ${\beta}2$-Microglobulin (${\beta}2m$) is known to be a major factor for dialysis-related amyloidosis. We have studied ${\beta}2m$ removal through an aggregation process, which was initiated by a ligand that could catch the ${\beta}2m$ monomer and promote its aggregation into fibril. As a ligand, we have prepared ${\beta}2m$ fibril fragments and used them as a seed. The seed was coupled to PEGylated-PS beads to remove the monomeric ${\beta}2m$ from solution. The ${\beta}2m$ seed-conjugated resin effectively adsorbed the ${\beta}2m$ monomers with a capacity of 3.6 mg/ml via promoting their aggregation into fibrils on the resin at pH 7.4.

Characteristics of COD Removal in the Electrolytic Treatment of Dyeing-Wastewater (전기분해에 의한 염색폐수의 COD 제거 특성)

  • 강광남;윤용수
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.139-146
    • /
    • 1998
  • The characteristics of color and COD removal for dyeing-wastewater using electrochemical reaction were investigated. >From the result, the removal efficiency of color and COD were increased with increase of temperature, decrease of electrode distance, increase of electrolyte concentration and increase of potential and these were obtained above 99%, above 75% within 30 min, individually. Cause of higher COD removal efficiency, it is more suitable that dyeing-wastewater is treated by electrolytic treatment prior to biological treatment. It is concluded that the electrolytic treatment of dyeing-wastewater can be used as the effective and economical method in practical treatment.

  • PDF