Browse > Article

Seed-Conjugated Polymer Bead for ${\beta}2$-Microglobulin Removal at Neutral pH  

Kim, Mi-Ra (School of Chemical and Biological Engineering, Seoul National University)
Kang, Sung-Soo (School of Chemical and Biological Engineering, Seoul National University)
Myung, Eun-Kyung (School of Chemical and Biological Engineering, Seoul National University)
Ahn, Min-Koo (School of Chemical and Biological Engineering, Seoul National University)
Choi, Jeong-Hyun (School of Chemical and Biological Engineering, Seoul National University)
Paik, Seung-R. (School of Chemical and Biological Engineering, Seoul National University)
Lee, Yoon-Sik (School of Chemical and Biological Engineering, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.9, 2009 , pp. 960-965 More about this Journal
Abstract
${\beta}2$-Microglobulin (${\beta}2m$) is known to be a major factor for dialysis-related amyloidosis. We have studied ${\beta}2m$ removal through an aggregation process, which was initiated by a ligand that could catch the ${\beta}2m$ monomer and promote its aggregation into fibril. As a ligand, we have prepared ${\beta}2m$ fibril fragments and used them as a seed. The seed was coupled to PEGylated-PS beads to remove the monomeric ${\beta}2m$ from solution. The ${\beta}2m$ seed-conjugated resin effectively adsorbed the ${\beta}2m$ monomers with a capacity of 3.6 mg/ml via promoting their aggregation into fibrils on the resin at pH 7.4.
Keywords
${\beta}2$-Microglobulin; dialysis-related amyloidosis; amyloid seed; polymer bead; protein aggregation;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Chan, W. C. and P. W. White. 2000. Fmoc solid phase peptide synthesis: A practical approach. pp. 41-76. Oxford University Press, New York
2 Davankov, V., L. Pavlovaa, M. Tsyurupa, J. Bradyb, M. Balsamo, and E. Yousha. 2000. Polymeric adsorbent for removing toxic proteins from blood of patients with kidney failure. J. Chromatogr. B Biomed. Sci. Appl. 739: 73-80   DOI   ScienceOn
3 Kaiser, E. T., R. L. Colescott, C. D. Blossinger, and P. I. Cook. 1970. Color test for detection of free terminal amino groups in solid-phase synthesis of peptides. Anal. Biochem. 34: 595-598   DOI   ScienceOn
4 Kihara, M., E. Chatani, M. Sakai, K. Hasegawa, H. Naiki, and Y. Goto. 2005. Seeding-dependent maturation of $\beta$2-microglobulin amyloid fibrils at neutral pH. J. Biol. Chem. 280: 12012-12018   DOI   ScienceOn
5 Mogi, M., M. Harada, T. Adachi, K. Kojima, and T. Nagatsu. 1989. Selective removal of $\beta$2-microglobulin from human plasma by high-performance immunoaffinity chromatography. J. Chromatogr. 496: 194-200   DOI   PUBMED   ScienceOn
6 Shabunina, I. V., O. I. Afanas'eva, and S. N. Pokrovskii. 2001. Immunosorbent for removal of $\beta$2-microglobulin from human blood plasma. Bull. Exp. Biol. Med. Immunol. Microbiol. 4: 984-986
7 Singh, S. M. and A. K. Panda. 2005. Solubilization and refolding of bacterial inclusion body proteins. J. Biosci. Bioeng. 99: 303-310   DOI   ScienceOn
8 Yamamoto, K., H. Yagi, D. Ozawa, K. Sasahara, H. Naiki, and Y. Goto. 2008. Thiol compounds inhibit the formation of amyloid fibrils by $\beta$2-microglobulin at neutral pH. J. Mol. Biol. 376: 258-268   DOI   PUBMED   ScienceOn
9 Lee, J. H., I. H. Lee, Y. J. Choe, S. Kang, H. Y. Kim, W. P. Gai, J. S. Hahn, and S. R. Paik. 2009. Real-time analysis of amyloid fibril formation of $\alpha$-synuclein with a fibrillation state-specific fluorescent probe of JC-1. Biochem. J. 418: 311-323   DOI   ScienceOn
10 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   PUBMED   ScienceOn
11 Franco, A., A. Caballero, J. Chisvert, J. Luflo, R. Perez,and M. Martinez. 1988. Beta2-microglobulin ($\beta$2m) levels in hemodialysis (HD) patients. Its variation during RD with different membranes. Kidney Int. 34: 288-302   DOI
12 Lornoy, W., I. Becaus, J. M. Billiouw, L. Sierens, P. V. Malderen, and P. D. Haenens. 2000. Hepatitis C and management of end-stage renal disease. Nephrol. Dial. Transplant. 15: 49- 54
13 Tsuchida, K., Y. Takemoto, and T. Nakamura. 1998. Lixelle adsorbent to remove inflammatory cytokines. Artif. Organs 22: 1064-1067   DOI   ScienceOn
14 Abe, T., K. Uchita, H. Orita, M. Kamimura, M. Oda, H. Hasegawa, et al. 2003. Effect of $\beta$2-microglobulin adsorption column on dialysis-related amyloidosis. Kidney Int. 64: 1522- 1528   DOI   ScienceOn
15 Bui, H. H., A. J. Schiewe, H. Grafenstein, and I. S. Haworth. 2006. Structural prediction of peptides binding to MHC class I molecules. Proteins 63: 43-52   DOI   ScienceOn
16 Furuyoshi, S., M. Nakatani, J. Taman, H. Kutsuki, S. Takata, and N. Tani. 1998. New adsorption column (Lixelle) to eliminate beta2-microglobulin for direct hemoperfusion. Ther. Apher. Dial. 2: 13-17   DOI   ScienceOn
17 Winchester, J. F. 2005. Novel changes in $\beta$2-microglobulin in dialysis patients. Clin. Chem. 51: 1089-1090   DOI   PUBMED   ScienceOn
18 Naiki, H., N. Hashimoto, S. Suzuki, H. Kimura, K. Nakakuki, and F. Gejyo. 1997. Establishment of a kinetic model of dialysis-related amyloid fibril extension in vitro. Amyloid 4: 223-232   DOI   ScienceOn
19 Grovender, E. A., B. Kellogg, J. Singh, D. Blom, H. Ploegh, K. D. Wittrup, R. Langer, and G. A. Ameer. 2004. Single-chain antibody fragment-based adsorbent for the extracorporeal removal of $\beta$2-microglobulin. Kidney Int. 65: 310-322   DOI   ScienceOn
20 Ameer, G. A., E. A. Grovender, H. Ploegh, D. Ting, W. F. Owen, M. Rupnick, and R. Langer. 2001. A novel immunoadsorption device for removing $\beta$2-microglobulin from whole blood. Kidney Int. 59: 1544-1550   DOI   ScienceOn
21 Radford, S. E., W. S. Gosal, and G. W. Platt. 2005. Towards an understanding of the structural molecular mechanism of $\beta$2- microglobulin amyloid formation in vitro. Biochim. et Biophys. Acta 1753: 51-63   DOI   PUBMED   ScienceOn
22 Gejyo, F., T. Yamada, S. Odani, Y. Nakagawa, M. Arakawa, T. Kunitomo, et al. 1985. A new form of amyloid protein associated with chronic hemodialysis was identified as $\beta$2- microglobulin. Biochem. Biophys. Res Commun. 129: 701-706   DOI   ScienceOn
23 Bjorkman, P. J., M. A. Saper, B. Samraoui, W. S. Bennett, J. L. Strominger, and D. C. Wiley. 1987. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329: 506- 512   DOI   ScienceOn
24 Deppermann, D., K. Andrassy, H. Seelig, F. Ritz, and D. Post. 1980. Evidence for dependence of beta-thromboglobulin levels on renal function (The Society of Nephrology, German speaking 1979). Kidney Int. 17: 403-404
25 Ohhashi, Y., M. Kihara, H. Naiki, and Y. Goto. 2005. Ultrasonication-induced amyloid fibril formation of $\beta$2- microglobulin. J. Biol. Chem. 280: 32843-32848   DOI   ScienceOn
26 Tsuchida, K., Y. Takemoto, and K. Sugimura. 2002. Adsorption of endotoxin by beta(2)-microglobulin adsorbent column (Lixelle): The new approach for endotoxinemia. Ther. Apher. 6: 116-118   DOI   ScienceOn
27 Chiba, T., Y. Hagihara, T. Higurashi, K. Hasegawa, H. Naiki, and Y. Goto. 2003. Amyloid fibril formation in the context of full-length protein: Effects of proline mutations on the amyloid fibril formation of $\beta$2-microglobulin. J. Biol. Chem. 278: 47016- 47024   DOI   ScienceOn
28 Meinhofer, J., M. Waki, E. P. Heimer, T. J. Lambross, R. C. Makofske, and C. D. Chang. 1979. Solid phase synthesis without repetitive acidolysis: Preparation of leucyl-alanylglycyl- valine using 9-fluorenyl-methyloxy-carbonyl-amino acids. Int. J. Peptide Protein Res. 13: 35-42   DOI   PUBMED
29 Bethea, M. and D. T. Forman. 1990. Beta 2-microglobulin: Its significance and clinical usefulness. Ann. Clin. Lab. Sci. 20: 163-168   PUBMED   ScienceOn
30 Chatani, E., H. Naiki, and Y. Goto. 2006. Seeding-dependent propagation and maturation of $\beta$2-microglobulin amyloid fibrils under high pressure. J. Mol. Biol. 359: 1086-1096   DOI   ScienceOn
31 Drueke, T. B. 2000. $\beta$2-Microglobulin and amyloidosis. Nephrol. Dial. Transplant. 15: 17-24   ScienceOn
32 Yamamoto, S., K. Hasegawa, I. Yamaguchi, S. Tsutsumi, J. Kardos, Y. Goto, F. Gejyo, and H. Naiki. 2004. Low concentrations of sodium dodecyl sulfate induce the extension of $\beta$2- microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 43: 11075-11082   DOI   PUBMED   ScienceOn
33 Kim, H., J. K. Cho, W. J. Chung, and Y. S. Lee. 2004. Coreshell- type resins for solid-phase peptide synthesis: Comparison with gel-type resins in solid-phase photolytic cleavage reaction. Organic Lett. 6: 3273-3276   DOI   ScienceOn
34 Yamamoto, S., I. Yamaguchi, K. Hasegawa, S. Tsutsumi, Y. Goto, F. Gejyo, and H. Naiki. 2004. Glycosaminoglycans enhance the trifluoroethanol-induced extension of $\beta$2-microglobulin–related amyloid fibrils at a neutral pH. J. Am. Soc. Nephrol. 15: 126- 133   DOI   ScienceOn
35 McParland, V. J., N. M. Kad, A. P. Kalverda, A. Brown, P. Kirwin-Jones, M. G. Hunter, M. Sunde, and S. E. Radford. 2000. Partially unfolded states of $\beta$2-microglobulin and amyloid formation in vitro. Biochemistry 39: 8735-8746   DOI   PUBMED   ScienceOn
36 Ohhashi, Y., K. Hasegawa, H. Naiki, and Y. Goto. 2004. Optimum amyloid fibril formation of a peptide fragment suggests the amyloidogenic preference of $\beta$2-microglobulin under physiological conditions. J. Biol. Chem. 279: 10814-10821   DOI   ScienceOn
37 Sunde, M., L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys, and C. C. F. Blake. 1997. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273: 729- 739   DOI   ScienceOn