• Title/Summary/Keyword: biological removal

Search Result 1,292, Processing Time 0.026 seconds

Biological Removal of a VOC Mixture in a Two-stage Bioreactor (이단미생물반응조에서 혼합 VOCs의 생분해 특성)

  • Song, Ji-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.758-766
    • /
    • 2006
  • A two-stage bioreactor, which consists of a biotrickling filter module and a biofilter module in series, was investigated for the enhanced treatment of a VOC mixture, toluene and methyl ethyl ketone (MEK). Throughout the experiments, the overall inlet loading rate was maintained at approximately $43g/m^3/hr$, but the inlet ratios of the VOCs were modified. The experimental results showed that the different ratios of the VOC mixture resulted in changes of overall removal efficiencies, elimination capacities (ECs) and microbial accumulation on the surface of each packing material. The ratio of inlet toluene to MEK at 50 : 150 was found to be most effective in terms of the overall removal efficiency, because, at this condition, MEK (i.e., the hydrophilic compound) was mostly removed in the biotrickling filter module and the following biofilter module was used to remove toluene. It was also found that when the inlet loading rate of the VOC mixture was serially increased stepwise within short-term periods, the ECs for toluene dropped significantly but the ECs for MEK increased at the ratio of the VOC mixture. These results implied that substrate interaction and/or substrate preferable utilization might have an effect on the biological removal of each compound in the two-stage bioreactor; therefore, the bioreactor should be operated in the condition where the substrate interaction could be minimized in order to maximize overall performance of the two-stage bioreactor.

Toluene Removal and Microbial Growth of Candida tropicalis Immobilized with Polymer Media in Airlift Bioreactors (효모 Candida tropicalis 고정화 담체를 이용한 Airlift 미생물반응기의 톨루엔 제거 및 미생물 성장)

  • Namgung, Hyeong-Kyu;Song, JiHyeon;Jung, Mi-Young;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.175-180
    • /
    • 2009
  • This study was conducted to improve biological degradation efficiency of toluene as a model volatile organic compound (VOC) using yeast Candida tropicalis and to suggest an effective method for bioreactor operation. The yeast strain was immobilized with polyethylene glycol (PEG), alginate, and powdered activated carbon (PAC). The yeast-immobilized polymer media were used as fluidized materials in an airlift bioreactor. Polymer media without PAC were also made and operated in another airlift bioreactor. The two bioreactors showed toluene removal efficiencies ranging 80-96% at loading rates of $10-35 g/m^3-hr$, and the bioreactor containing the polymer media with PAC achieved higher removal efficiency. Protein contents in the liquid phase showed that the bioreactor using the yeast-immobilized polymer media with PAC had a higher rate of microbial growth initially than that without PAC. In addition, the microbial growth rate inside of the polymer media with PAC was five times higher than that without PAC. Consequently, the polymer media containing the yeast strain and PAC could enhance removal efficiencies for VOCs, and the immobilization method improve microbial activity and stability for a long-term operation of biological systems.

Recent Advances in the Removal of Radioactive Wastes Containing 58Co and 90Sr from Aqueous Solutions Using Adsorption Technology

  • Alagumalai, Krishnapandi;Ha, Jeong Hyub;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.352-366
    • /
    • 2022
  • Nuclear power plant operations for electricity generation, rare-earth mining, nuclear medical research, and nuclear weapons reprocessing considerably increase radioactive waste, necessitating massive efforts to eradicate radioactive waste from aquatic environments. Cobalt (58Co) and strontium (90Sr) radioactive elements have been extensively employed in energy generation, nuclear weapon testing, and the manufacture of healthcare products. The erroneous discharge of these elements as pollutants into the aquatic system, radiation emissions, and long-term disposal is extremely detrimental to humans and aquatic biota. Numerous methods for treating radioactive waste-contaminated water have emerged, among which the adsorption process has been promoted for its efficacy in eliminating radioactive waste from aquatic habitats. The current review discusses the adsorptive removal of radioactive waste from aqueous solutions using low-cost adsorbents, such as graphene oxide, metal-organic frameworks, and inorganic metal oxides, as well as their composites. The chemical modification of adsorbents to increase their removal efficiency is also discussed. Finally, the current state of 58Co and 90Sr removal performances is summarized and the efficiencies of various adsorbents are compared.

Removal of Inorganic Nitrogen and Phosphorus from Cow s Liquid Manure by Batch Algal Culture

  • KIM, MAM-SOO;MOO-YOUNG PACK
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.3
    • /
    • pp.214-216
    • /
    • 1993
  • Cow's liquid manure (CLM), an animal waste, was treated by a batch algal culture to remove inorganic nutrients. CLM used in this study was especially high in concentrations of inorganic nitrogen and phosphorus. The optimum dilution ratio of the CLM for maximum algal growth was 1:25. Ninety five percent of inorganic nitrogen and 100% of inorganic phosphorus were removed from the CLM with a dilution ratio of 1:25.

  • PDF

Enhancement of Nitrate Removal Ability in Aqueous Phase Using Ulmus davidiana Bark for Preventing Eutrophication (부영양화 방지를 위하여 느릅나무 수피를 활용한 수중에서 질산성질소의 제거능 향상)

  • Choi, Suk Soon;Choi, Jung Hoon;Kim, Min-Ji;Lee, Young-Seak;Ha, Jeong Hyub;Cha, Hyung Joon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.604-608
    • /
    • 2015
  • In the present work, the improvement of nitrate removal ability was investigated to resolve a eutrophication problem by using Ulmus davidiana (U. davidiana) bark generated from Gangwon province. When the initial pH of aqueous solution was adjusted to 3.5 in batch experiments, the removal efficiencies for 10 and 20 mg/L nitrate increased up to 43 and 37%, respectively. In addition, when U. davidiana bark of 1.0 g/100 mL was used for 8 h, the removal efficiency for 20 mg/L nitrate was 68%. Moreover, when reforming reaction of U. davidiana bark was performed under oxyfluorination conditions, the optimal ratio of partial pressure between fluorine and oxygen was 1 : 9 for an enhanced nitrate adsorption amount. When reformed U. davidiana bark was used for 8 h operation under the optimal oxyfluorination condition, removal efficiencies for 10, 20 and 40 mg/L nitrate were found to be 96, 95 and 59%, respectively. Collectively, these results suggest that our water treatment technology can be effectively utilized to treat high concentrations of nitrate in water bodies.

Effects of Rotational Speed and Hydraulic Residence Time on the Ammonia Removal of a Rotating Biological Contactor (RBC) (회전속도와 수리학적 체류시간이 회전원판식(Rotating Biological Contactor;RBC) 여과조의 암모니아 제거에 미치는 영향)

  • 오승용;조재윤;김종만
    • Journal of Aquaculture
    • /
    • v.16 no.3
    • /
    • pp.142-150
    • /
    • 2003
  • Performance of a biological filter, the rotating biological contactor (RBC), is affected by rotational speed and hydraulic residence time (HRT). A RBC with a disc diameter of 62 cm, total surface area of 48.28 $m^2$, volume of 0.34 ㎥, and submergence ratio of 35.4% was tested for the combinations of five rotational speeds (1, 2, 3, 4 & 5 rpm) and three HRT (0.5, 1.0 & 2.0 hr) to find out the maximum removal efficiencies of total ammonia nitrogen (TAN) and nitrite nitrogen of a simulated recirculating aquaculture system. Ammonia loading rate in the system was 25 g of TAN/ ㎥. day. Removal efficiencies were checked when TAN concentrations in the system stabilized for 3 days in each treatment. The concentration of TAN in the system decreased with increasing rotational speed of the RBC up to 4 rpm in all HRT (P<0.05). At the rotational speed of 5 rpm, the efficiencies decreased in all HRT (P<0.05). When the rotational speeds were 1, 2, 3, 4, and 5 rpm, TAN concentrations in the system were 1.35, 0.94, 0.69, 0.66, and 0.76 mg/L at the 0.5 hr HRT, 2.86, 1.18, 0.96, 0.87, and 1.11 mg/L at the 1.0 hr HRT, and 5.30, 2.44, 1.99, 1.77, and 2.01 mg/L at the 2.0 hr HRT, respectively. The TAN removal efficiencies of the RBC at the rotational speeds of 1, 2, 3, 4, and 5 rpm were 32.9, 49.5, 65.1, 72.9, and 62.9% in 0.5 hr HRT,33.1, 74.1, 87.1, 95.8, and 78.5% in 1.0 hr HRT, and 35.5, 76.7, 89.6, 97.0, and 85.5% in 2.0 hr HRT, respectively. TAN removal efficiency of RBC per pass increased with increasing HRT. However, TAN concentration in the system also increased. The best operating condition among the treatments was obtained at the treatment of 0.5 hr HRT and 4 rpm (P<0.05). The TAN concentration was 0.66 mg/L. Concentrations of nitrite nitrogen (NO$_2$$^{[-10]}$ -N) in the system decreased with increasing rotational speed in all HRT while that in the system increased with increasing HRT in all rotational speeds. The ranges of NO$_2$$^{[-10]}$ -N concentrations at HRT of 0.5, 1.0, and 2.0 hr in the system were 0.26~0.32, 0.31~0.56, and 0.43~l.45 mg/L, respectively. The ranges of daily removal rates of TAN in this system were 20.03~23.0 g TAN/㎥ㆍday and those of nitrite nitrogen were 19.65~30.25 g NO$_2$$^{[-10]}$ -N/㎥ㆍday.

Biological Treatment of Textile Wastewater by Anaerobic-Aerobic Reactor System (Pilot 혐기-호기 공정을 이용한 염색폐수의 생물학적 처리)

  • 박영식;안갑환
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.11-20
    • /
    • 2001
  • An anaerobic sludge-aerobic fixed-bed biofilm(packed with ceramic support carrier of 1 inch size) reactor system was built up to treat textile wastewater. The efficiency of reactor system was examined by determining the effects of textile wastewater ratio(from 25% to 100% at HRT 24 h). The influent range of SCOD concentration and color were 1,036~1,357 mg/L, and 1,487~1,853 degree, respectively. When textile wastewater ratio was 100% and hydraulic retention time was 24 hours, SCOD removal efficiency by the anaerobic stage were 39.2% 100% and hydraulic retention time was 24 hours, SCOD removal efficiency by the anaerobic stage were 39.2% and the removal efficiency of the whole system were 75.8%. Color removal efficiency by the anaerobic stage were 45.4%(soluble color), and the removal efficiency of the whole system were 70.2%. In the A/A reactor system, the aerobic stage played an important role in removing both color and COD as well as anaerobic stage.

  • PDF

Integrated System of RBC-lime Precipiatation for Simultaneous Removal of Organics and Nutrients (회전원판공정과 화학침전공정 조합을 이용한 유기물과 질소*인의 동시제거)

  • 박종안;허준무;손부순
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.132-140
    • /
    • 1998
  • Laboratory-scale experiments were conducted using a three-stage rotating biological contactor unit followed by lime precipitation and sedimentation with effluent recycle to the first stage. The purpose of this study was to evaluate the effects of hydraulic loadings of 0.031-0.076 $m^3/m^2/d and recycle ratio of 1 to 3 on the simultaneous removal of organics and nutrients from domestic wastewater. Lime was added to maintain pH of 10.4-11.0 in the coagulation-flocculation reactor. Results showed that the highest nitrogen removal rate of 70.5% occurred at the lower hydraulic loading of 0.031 $m^3/m^2/d at a recirculation rate of 300%, and similarly, highest nitrification occurred at the same hydraulic loading and recycle ratio. Concentration of ammonia nitrogen in the effluent was less than 1 mg/l at the same operating conditions for higher nitrogen removal. Whereas, high BOD and COD removal was observed at hydraulic loading rate of 0.054 $m^3/m^2/d, and high removal of organic matter was evident from the consistent low COD and BOD value. Results obtained from the operating condition of higher loading rate, 300% of recycle rate showed the highest removals. Increasing in recycle rate and hydraulic loading rate increased the volatile solids fraction of the sludges generated to the extent of 47% at 0.076 $m^3/m^2/d hydraulic loading and 300% recirculation rate. Since pH in the flocculator was maintained at the pH of 10.4-11.0, above 90% removal of phosphorus was obtained. Average concentration of suspended solids was always maintained over 40 mg/l in the effluent. Therefore an RBC unit operating at a hydraulic loading near 0.031 $m^3/m^2/d with a recycle rate of 300% is a viable and feasible alternate conditions to produce an effluent with relative low organic matter and phosphorus, provided that there is a neutralization unit to control the pH and SS of the effluent.

  • PDF

Comparative Study on Biological Pretreatment Processes for Biologically Stable Drinking Water (생물처리를 이용한 상수원수의 전처리공정에 관한 비교연구)

  • 우달식;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.69-76
    • /
    • 1996
  • Biological process have the potential to remove pollutants such as biodegradable organic fraction, $NH_3-N$, ABS, etc. that may be partially removed by conventional water treatment. This study was performed to evaluate four different processes of biological pretreatment as Biological Fluidized Bed(BFB), Biological Filter(BF), Rotating Biological Contactor(RBC) and Honey Comb(HC). In a given condition it proved out that BFB and BF are prospective biological pretreatment processes because they were the most effective on the removal of organic matter and ammonia. Preozonation of raw water for biological processes increased in biodegradable organic fraction about 10-40% with 0.425-0.85 mg $O_3/mg$ DOC.

  • PDF

Simultaneous Nitrification and Dennrincation of Recirculating Aquaculture Water by Biofilter Reactor (생물막 여과 반응기를 이용한 양어장 순환수의 동시 질산화 및 탈질산화 반응)

  • Lee, Min-Gyu;Suh, Kuen-Hack;Oh, Yung-Hee
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.409-415
    • /
    • 1997
  • In order to Investigate the possibility as a simple technique of wastewater treatment for recirculating aquaculture system, the experiment by a biofilter unfit was carried out. The high and stable removal efficiency of nitrogen could be obtained by selecting the optimum recycle ratio and DO concentration. It was found that the proper combination of nitrifacation and denitrfication step in the reactor would be required for increasing the removal efficiency. The extent of nitrogen removal gradually decreased UO the rise of re- cycle ratio since the depression of denitrificatlon by the lack of hydrogen donor. The depression of nitrogen removal was overcome by increasing the CIN ratio In the wastewater. The extent of phosphorus removal was increased slightly with the increase of DO concentration and recycle ratio, but high removal efficiency was not observed. However, the extent of COD removal was not affected by recycle ratio and DO concentration and showed the stable removal of above 90%.

  • PDF