• Title/Summary/Keyword: biological reactor

Search Result 504, Processing Time 0.032 seconds

A Study on Dissolve and Remove Analysis of Organic Chemicals Using a Mixed Method of Advanced Oxidation and Micro Filtering - Water Drinking Point - (고도산화와 정밀여과의 혼성공법을 이용한 유기화학물질의 분해 및 제거분석에 관한 연구 - 먹는 물을 중심으로 -)

  • An, Tai-Young;Jun, Sang-Ho;Ahn, Tae-Seok;Han, Mi-Ae;Hur, Jang-Hyun;Pak, Mi-Young
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.99-111
    • /
    • 2007
  • It is impossible to remove toxic organic substances that are recognized as a cancer caused suspicious element in drinking water using the conventional water purification method. This study introduces groundwater into a reaction chamber as an effective amount of water to process this water using a mixed method of AOP oxidation and M/F membrane and purifies it as a desirable level by artificially mixing such toxic substances in order to effectively process the water. Based on this fact, this study configures an optimal operation condition. The VOCs existed in toxic substances was investigated as a term of phenol and toluene, and agricultural chemicals were also investigated as a term of parathion, diazinon and carbaryl. The experiment applied in this study was performed using a single and composite soolution. In the operation condition applied to fully dissolve and remove such substances, the amount of $H_2O_2$ injected in the process was 150 mL of a fixed quantity, the value of pH was configured as $5.5{\sim}6.0$, the temperature was controlled as a range of $12{\sim}16^{\circ}C$, the dissolved amount of ozone was applied more than 5.0 mg/L, the reaction time was determined as an optimal condition, such as $30{\sim}40$ minutes, and the segregation membrane in the same reactor was determined for acquire water drinking of large quantity using a pore size of $0.45{\mu}m$ M/F membrane.

Removal Characteristics of Nitrogen and Phosphorus in swine wastewater by Using Acetic acid on the SBR Process (SBR에서 아세트산을 이용한 양돈폐수의 질소·인 제거 특성)

  • Huh, Mock;Kang, Jin-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.84-93
    • /
    • 2004
  • This study was performed : 1) to find the suitable HRT(hydralic retention time), 2) to evaluate the effects of the ratio of mixing/aeration time and injection time of external carbon source, for the removal of organics, nitrogen and phosphorus in swine wastewater by SBR(sequencing batch reactor process), which is one of the biological treatment process. The result of this study were summarized as follows : (1) As the ratio of mixing/aeration time was higher, $NH_4{^+}-N$ removal efficiency was increased and it was increased with increasing injection time of external carbon source because nitrification was affected by denitrification microbes propagation when injection time of external carbon soruce was shorted. T-N removal efficiency was increased with increasing the ratio of mixing/aeration time and injection time of external carbon source. (2) The T-P removal efficiency showed a great difference in each operating condition, and it was increased with increasing the ratio of mixing/aeration time increased and when the injection time of external carbon source was shorted because denitrification was done with effect by denitrification microbes propagation. (3) The highest removal efficiency of organic and nitrogen were obtained by the operating condition of Run 4-1(the ratio of mixing/aeration time : 16.5/5.5, injection time of external carbon source : 15hours) and T-P were obtained by the operation condition of Run 4-2(the ratio of mixing/aeration time : 16.5/5.5, injection time of external carbon source : 3hours), and efficiency(effluent concentration)of $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, T-N and T-P in the treated water was 96.1%, 87.7%, 90.6%, 86.6% and 84.5%, respectively.

  • PDF

Removal Behavior of Biological Nitrogen and Phosphorus and Prediction of Microbial Community Composition with Its Function, in an Anaerobic-Anoxic System form Weak Sewage

  • LEE, JIN WOO;EUI SO CHOI;KYUNG IK GIL;HAN WOONG LEE;SANG HYON LEE;SOO YOOUN LEE;YONG KEUN PARK
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.994-1001
    • /
    • 2001
  • An easier way of understanding the BNR system was proposed from the study on substrate, nutrient removal tendency, microbial community and its metabolic function by applying the municipal settled sewage. During the anaerobic period, the phosphorus release rate per VFACOD we varied depending on the phosphorus content in the sludge. When the phosphorus content in the sludge was $6\%$ VSS, according to influent VFACOD, the phosphorus release rate and PHA production were $0.35 gPO_4P/gVFACOD$ and 1.0 gPHA/gVFACOD, respectively. The $NO_3N$ requirement for the phosphorus uptake as an electron acceptor was about $0.5 gNO_3N/gPO_4P_{uptake}$ based on the proposed equation with PHA, biomass, production, and the concentration of phosphorus release/uptake. Bacterial-community analysis of the sludge, as determined by FISH and 16SrDNA characterization FISH, revealed that the beta-subclass proteobacteria were the most abundant group ($27.9\%$ of the proteobacteria-specific probe EUB338), and it was likely that representative of the beta-subclass played key roles in activated sludge. The next dominant group found was the gamma-protebacteria ($15.4\%$ of probe EUB338). 16S rDNA clone library analysis showed that the members of${\beta}$- and ${\gamma}$-proteobacteria were also the most abundant groups, and $21.5\%$ (PN2 and PN4) and $15.4\%$ (PN1 and PN5) of total clones were the genera of denitrifying bacteria and PAO, respectively. Prediction of the microbial community composition was made with phosphorus content (Pv, $\%$ P/VSS) in wasted sludge and profiles of COD, PHA, $PO_4P,\;and\;NO_3N$ in an anaerobic-anoxic SBR unit. Generally, the predicted microbial composition based upon metabolic function, i.e., as measured by stoichiometry, is fairly similar to that measure by the unculturable dependent method. In this study, a proposal was made on he microbial community composition that was more easily approached to analyze the reactor behavior.

  • PDF

Swine Wastewater Treatment Using Continuos Circulation Biofilm Process (연속순환 생물막 공정을 이용한 돈사 폐수 처리)

  • Goh, B.D.;Ra, C.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.279-286
    • /
    • 2007
  • A submerged biofilm sequencing batch reactor (SBSBR) process, which liquor was internally circulated through sandfilter, was designed, and performances in swine wastewater treatment was evaluated under a condition of no external carbon source addition. Denitrification of NOx-N with loading rate in vertical and slope type of sandfilter was 19% and 3.8%, respectively, showing approximately 5 times difference, and so vertical type sandfilter was chosen for the combination with SBSBR. When the process was operated under 15 days HRT, 105L/hr.m3 of internal circulation rate and 54g/m3.d of NH4-N loading rate, treatment efficiencies of STOC, NH4-N and TN (as NH4-N plus NOx-N) was 75%, 97% and 85%, respectively. By conducting internal circulation through sandfilter, removal performances of TN were enhanced by 14%, and the elevation of nitrogen removal was mainly attributed to occurrence of denitrification in sandfilter. Also, approximately 57% of phosphorus was removed with the conduction of internal circulation through sandfilter, meanwhile phosphorus concentration in final effluent rather increased when the internal circulation was not performed. Therefore, It was quite sure that the continuous internal circulation of liquor through sandfilter could contribute to enhancement of biological nutrient removal. Under 60g/m3.d of NH4-N loading rate, the NH4-N level in final effluent was relatively low and constant(below 20mg/L) and over 80% of nitrogen removal was maintained in spite of loading rate increase up to 100g/m3.d. However, the treatment efficiency of nitrogen was deteriorated with further increase of loading rate. Based on this result, an optimum loading rate of nitrogen for the process would be 100g/m3.d.

STUDIES ON THE MATHEMATICAL KINETICS FOR THE REMOVABLE MOVING SCREEN MEDIA-ACTIVATED SLUDGE PROCESS (회전형 반고정망 활성슬럿지 공법의 수학적 해석에 관한 연구 2. 슬럿지 생산량 및 축적과정과 유출수의 수질에 대하여)

  • HAN Ung-Jun;HAN Yeong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.175-179
    • /
    • 1979
  • One of the major problems in tile activated sludge system has been difficulty in separating the microbial solids from the treated effluent and in returning them to the aeration tank. Another problem has been the digestion of the excess activated sludge. In constrast, it has not been difficult to separate the microbial solids from the treated effluent from the biological fixed-film systems(RBC process, Trickling Filter, FAST process). These systems have also featured less sludge production. Recently, it was proposed to experiment with the RESMAS process in order to eliminate the settling tank and sludge concentration facilities and to reduce the quantity of excess sludge for final disposal. The effluent quality could be predicted by .the concept of the maximum accumulation capacity. However, the hydraulic characteristics of the screen media in the RESMAS reactor were not dynamic. The object of the present study is to evalute the sludge accumulation rate and effluent quality prediction in the REMSMAS process designed in the dynamic hydraulic structure. This process can eliminate the final sedimentation tank and sludge concentration tank needed in the RBC, CMAS, Trickling Filter and FAST processes. Also, the effluent quality is desirable to compare with other processes. It appeared that the value of the sludge holding capacity was higher than those of the RESMAS and FAST processes, and the periods of the critical operating time were proportional to the substrate hydraulic loadings.

  • PDF

Study on Conversion of Carbon Dioxide to Methyl Alcohol over Ceramic Monolith Supported CuO and ZnO Catalysts (세라믹 모노리스에 담지된 CuO와 ZnO계 촉매에 의한 이산화탄소의 메탄올로의 전환에 관한 연구)

  • Park, Chul-Min;Ahn, Won-Ju;Jo, Woong-Kyu;Song, Jin-Hun;Kim, Ki-Joong;Jeong, Woon-Jo;Sohn, Bo-Kyun;Ahn, Byeong Kwon;Chung, Min-Chul;Park, Kwon-Pil;Ahn, Ho-Geun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.97-104
    • /
    • 2013
  • Methyl alcohol is one of the basic intermediates in the chemical industry and is also being used as a fuel additive and as a clean burning fuel. In this study, conversion of carbon dioxide to methyl alcohol was investigated using catalytic chemical methods. Ceramic monoliths (M) with $400cell/in^2$ were used as catalyst supports. Monolith-supported CuO-ZnO catalysts were prepared by wash-coat method. The prepared catalysts were characterized by using ICP analysis, TEM images and XRD patterns. The catalytic activity for carbon dioxide hydrogenation to methyl alcohol was investigated using a flow-type reactor under various reaction temperature, pressure and contact time. In the preparation of monolith-supported CuO-ZnO catalysts by wash-coat method, proper concentration of precursors solution was 25.7% (w/v). The mixed crystal of CuO and ZnO was well supported on monolith. And it was known that more CuO component may be supported than ZnO component. Conversion of carbon dioxide was increased with increasing reaction temperature, but methyl alcohol selectivity was decreased. Optimum reaction temperature was about $250^{\circ}C$ under 20 atm because of the reverse water gas shift reaction. Maximum yield of methyl alcohol over CuO-ZnO/M catalyst was 5.1 mol% at $250^{\circ}C$ and 20 atm.

Biological Hydrogen Production from Mixed Organic Waste of Food and Activated Sludge by Pre-treatment (음식물쓰레기와 전처리한 폐활성슬러지의 혼합비율에 따른 생물학적 수소생산)

  • Lee, Jun-Cheol;Kim, Jae-Hyung;Choi, Kwang-Keun;Pak, Dae-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1044-1050
    • /
    • 2007
  • In this study, Bio-hydrogen is produced from organic waste mixtures containing food waste and waste activated sludge (WAS). The effects of different operational factor on hydrogen production, including various solubilization methods for pretreatments of WAS, pH and different ratios of food waste and WAS, were investigated. The highest hydrogen production values are obtained as 4.3 mL $H_2/g$ $VS_{consumed}$ in the case of applying the mixed pre-treatments of alkali and ultrasonic. The pH value in bio-reactor increased from 4 to 8 after the ultrasonic treatment with alkali and the hydrogen yield touched its highest value in the pH range of 5.0 to 5.5. Similarly, the hydrogen production reached the level of 13.8 mL $H_2/g$ $VS_{consumed}$ using the same pre-treatment method from the mixture of food waste and WAS. The ratio of 2 : 1 produced a maximum amount of hydrogen of 5.0 L $H_2/L/d$. The amount of volatile fatty acids(VFAs) including acetate, propionate and butyrate, were also varied considerably. Propionate decreased consistently with rising of hydrogen while butyrate comparing to acetate relatively increased in the effluent.

Influence of Food Wastewater Loading Rate on the Reactor Performance and Stability in the Thermophilic Aerobic Process (음폐수 부하량에 따른 고온호기성 공정의 처리 양상)

  • Jang, Hyun Min;Choi, Suk Soon;Ha, Jeong Hyub;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.279-284
    • /
    • 2013
  • In this study, the feasibility of a single-stage thermophilic aerobic process for the treatment of high-strength food wastewater produced from the recycling process of food wastes was examined to substitute anaerobic digestion process. Also, the removal and stability of thermophilic aerobic process were assessed according to the changes of hydraulic retention times (HRTs) and organic loading rates (OLRs). When the OLR increased from 9.2 to $37.2kgCOD/m^3d$, a pH value in R1 (HRT : 5 d) significantly decreased to 5.0, due to the organic acid accumulation. On the other hand, the pH value in R2 (HRT : 10 d) was stable and R2 showed the high removal of COD, organic acid and lipid, even though the OLR increased from 4.6 to $18.6kgCOD/m^3d$. In R1, the COD loading rates for COD removal was suddenly dropped, as the COD loading rate increased from 18.6 to $28.4kgCOD/m^3d$. In contrast, R2 showed that the COD loading rates for COD removal increased with regard to increment in the loading rates of 3.61, 7.05, 9.43 and $12.2kgCOD/m^3d$, indicative of the high COD removal efficiency. Therefore, the results demonstrated that over 10-d HRT, the high concentration of raw food wastewater was efficiently treated in the single-stage thermophilic aerobic process.

Life Cycle Assessment of the Carbon Emissions of MLE process and Denitrification Process Using Granular Sulfur (MLE공법과 황이용 탈질 프로세스의 전과정 탄소 배출량 평가)

  • Moon, Jin-young;Hwang, Yong-woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.619-627
    • /
    • 2012
  • In order to determine reduction of greenhouse gas emissions (GHGs) when the submerged membrane bioreactor with granular sulfur (MBR-GS) is used in wastewater treatment plant (WTP), the amount of GHGs was compared and analyzed in the advanced treatment process of P wastewater treatment plant (WTP). The amount of GHGs was estimated by classifying as construction and operation phase in WTP. The amount of GHGs in construction phase was evaluated from multiplying raw materials by using carbon emission factors. Also the amount of GHGs in operating phase was calculated by using total electricity consumption and carbon emission factor. The construction of anoxic tank and secondary settling tank is unnecessary, because the MBR-GS conducts simultaneously the nitrification and denitrification in aeration tank and filtration by hollow fiber membrane. The amount of $CO_2$, $CH_4$, and $N_2O$ emitted by constructing the MBR-GS was 6.44E+06 kg, 8.16E+03 kg and 1.38E+01 kg, respectively. The result shows that the GHGs was reduced about 47 % as compared with the construction in the MLE process. In operating the MBR-GS, the electricity is not required in the biological reactor and secondary setting tank. Thus, the amount of $CO_2$, $CH_4$, and $N_2O$ emitted by operating in the MBR-GS was 7.39E+05 kg/yr, 5.80E+02 kg/yr and 2.44E+00 kg/yr, respectively. The result shows that the GHGs were reduced about 37 % as compared with the operation in the MLE process. Also, $LCCO_2$(Life Cycle $CO_2$) was compared and analyzed between MLE process and MBR-GS. The amount of $LCCO_2 $emitted from the MLE process and MBR-GS was 3.56E+04 ton $CO_2$ and 2.12E+04 ton $CO_2$, respectively. The result shows that the GHGs in MBR-GS were reduced to about 40 % as compared in the MLE process during life cycle. As a result, sulfur-utilizing autotrophic denitrification process (SADP) is expected to be utilized as the cost-effective advanced treatment process, owing to not only high nitrogen removal efficiency but also the GHGs reduction in construction and operation stage.

Comparison of bacterial communities in leachate from decomposing bovine carcasses

  • Yang, Seung Hak;Ahn, Hee Kwon;Kim, Bong Soo;Chang, Sun Sik;Chung, Ki Yong;Lee, Eun Mi;Ki, Kwang Seok;Kwon, Eung Gi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1660-1666
    • /
    • 2017
  • Objective: Burial is associated with environmental effects such as the contamination of ground or surface water with biological materials generated during the decomposition process. Therefore, bacterial communities in leachates originating from the decomposing bovine carcasses were investigated. Methods: To understand the process of bovine (Hanwoo) carcass decomposition, we simulated burial using a lab-scale reactor with a volume of $5.15m^3$. Leachate samples from 3 carcasses were collected using a peristaltic pump once a month for a period of 5 months, and bacterial communities in samples were identified by pyrosequencing of the 16S rRNA gene. Results: We obtained a total of 110,442 reads from the triplicate samples of various sampling time points (total of 15 samples), and found that the phylum Firmicutes was dominant at most sampling times. Differences in the bacterial communities at the various time points were observed among the triplicate samples. The bacterial communities sampled at 4 months showed the most different compositions. The genera Pseudomonas and Psychrobacter in the phylum Proteobacteria were dominant in all of the samples obtained after 3 months. Bacillaceae, Clostridium, and Clostridiales were found to be predominant after 4 months in the leachate from one carcass, whereas Planococcaceae was found to be a dominant in samples obtained at the first and second months from the other two carcasses. The results showed that potentially pathogenic microbes such as Clostridium derived from bovine leachate could dominate the soil environment of a burial site. Conclusion: Our results indicated that the composition of bacterial communities in leachates of a decomposing bovine shifted continuously during the experimental period, with significant changes detected after 4 months of burial.