• 제목/요약/키워드: biological immune system

검색결과 243건 처리시간 0.023초

Advances in Accurate Microbial Genome-Editing CRISPR Technologies

  • Lee, Ho Joung;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.903-911
    • /
    • 2021
  • Previous studies have modified microbial genomes by introducing gene cassettes containing selectable markers and homologous DNA fragments. However, this requires several steps including homologous recombination and excision of unnecessary DNA regions, such as selectable markers from the modified genome. Further, genomic manipulation often leaves scars and traces that interfere with downstream iterative genome engineering. A decade ago, the CRISPR/Cas system (also known as the bacterial adaptive immune system) revolutionized genome editing technology. Among the various CRISPR nucleases of numerous bacteria and archaea, the Cas9 and Cas12a (Cpf1) systems have been largely adopted for genome editing in all living organisms due to their simplicity, as they consist of a single polypeptide nuclease with a target-recognizing RNA. However, accurate and fine-tuned genome editing remains challenging due to mismatch tolerance and protospacer adjacent motif (PAM)-dependent target recognition. Therefore, this review describes how to overcome the aforementioned hurdles, which especially affect genome editing in higher organisms. Additionally, the biological significance of CRISPR-mediated microbial genome editing is discussed, and future research and development directions are also proposed.

The Within-Host Population Dynamics of Normal Flora in the Presence of an Invading Pathogen and Antibiotic Treatments

  • Kim, Jung-Mo;Lee, Dong-Hwan;Song, Yoon-Seok;Kang, Seong-Woo;Kim, Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.146-153
    • /
    • 2007
  • A mathematical competition model between normal flora and an invading pathogen was devised to allow analysis of bacterial infections in a host. The normal flora includes the various microorganisms that live on or within the host and act as a primary human immune system. Despite the important role of the normal flora, no mathematical study has been undertaken on models of the interaction between it and invading pathogens against a background of antibiotic treatment. To quantify key elements of bacterial behavior in a host, pairs of nonlinear differential equations were used to describe three categories of human health conditions, namely, healthy, latent infection, and active infection. In addition, a cutoff value was proposed to represent the minimum population level required for survival. The recovery of normal flora after antibiotic treatment was also included in the simulation because of its relation to human health recovery. The significance of each simulation parameter for the bacterial growth model was investigated. The devised simulation showed that bacterial proliferation rate, carrying capacity, initial population levels, and competition intensity have a significant effect on bacterial behavior. Consequently, a model was established to describe competition between normal flora and an infiltrating pathogen. Unlike other population models, the recovery process described by the devised model can describe the human health recovery mechanism.

Leukemia inhibitory factor and its receptor: expression and regulation in the porcine endometrium throughout the estrous cycle and pregnancy

  • Yoo, Inkyu;Chae, Soogil;Han, Jisoo;Lee, Soohyung;Kim, Hyun Jong;Ka, Hakhyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권2호
    • /
    • pp.192-200
    • /
    • 2019
  • Objective: Leukemia inhibitory factor (LIF) binds to a heterodimeric receptor composed of LIF receptor (LIFR) and glycoprotein 130 (GP130) to transmit signals into the cell. LIF plays an important role in reproduction by regulating immune response, decidualization, and implantation in several species. However, the expression of LIF and LIFR in the endometrium throughout the estrous cycle and pregnancy in pigs is not fully understood. Methods: We analyzed the expression of LIF and LIFR in the endometrium on days 0 (estrus), 3, 6, 9, 12, 15, and 18 of the estrous cycle, and days 12, 15, 30, 60, 90, and 114 of pregnancy, in conceptuses on days 12 and 15, and in chorioallantoic tissues on days 30, 60, 90, and 114 of pregnancy in pigs. We also determined the effects of estrogen and progesterone on the expression of LIF and LIFR in endometrial tissues. Results: The expression of LIF increased in the endometrium during the late diestrus phase of the estrous cycle and during mid- to late- pregnancy, while the expression of LIFR increased during early pregnancy. The expression of LIF was induced by increasing doses of estrogen, whereas the expression of LIFR was induced by increasing doses of progesterone. Conclusion: These results indicate that the expression of LIF and its receptor LIFR in the endometrium is regulated in a stage-specific manner during the estrous cycle and pregnancy, suggesting that LIF and its receptor signaling system may play critical roles in regulating endometrial function in pigs.

면역 알고리즘의 개선된 클론선택에 의한 퍼지 뉴로 네트워크와 교통경로선택으로의 응용 (Fuzzy-Neural Networks by Means of Advanced Clonal Selection of Immune Algorithm and Its Application to Traffic Route Choice)

  • 조재훈;김동화;오성권
    • 한국지능시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.402-410
    • /
    • 2004
  • 본 논문에서는 복잡하고 비선형적인 시스템을 위하여 최적 면역 알고리즘의 개선된 클론선택에 기반을 둔 최적FNN 설계방법을 제안한다. FNN은 퍼지추론의 간략 추론과 학습방법으로는 오류역전파 알고리즘을 하였고 멤버쉽함수의 파라미터, 학습률 및 모멘텀 계수들을 선정하기 위하여 개선된 클론 선택을 사용하는 방법을 도입하였다. 제안한 알고리즘은 생체의 면역반응에 기초를 둔 면역알고리즘의 클론선택을 기본으로 분화율을 조절하여 성능을 개선하였다. 그 과정을 통하여 다양한 항체들을 생성하고 목적함수나 제한조건과 같은 항원들에 대하여 가장 높은 친화도를 가지는 항체를 최적 항체로 선택하였다. 제안된 알고리즘의 성능을 평가하기 위하여 가스로공정과 교통경로선택 공정을 사용한다.

누에에의 차별화 선별을 통한 면역 관련 유도 유전자의 분리와 특성 (Isolation and Characterization of Inducible Genes from Bombyx mori Injected with E. coli by Differential Screening)

  • 김상현;제연호
    • 한국잠사곤충학회지
    • /
    • 제38권1호
    • /
    • pp.19-24
    • /
    • 1996
  • 누에에서 생체 방어에 관련된 새로운 항 세균성 펩타이드 유전자를 탐색 분리하기 위하여 누에 체강에 비 병원성 세균인 Escherichia coli를 주사하여 면역 반응의 일환으로 발현량이 증가하는 유도 유전자 종류를 조사 하였다. 체강 주사 8시간 후 누에에서 cDNA 유전자 은행을 만들고, 정상 및 유도 누에에서 분리한 각각의 mRNA를 탐침으로 차별화 선별을 하였다. 차별화 선별 결과 정상보다도 유도 누에의 탐침을 사용한 막에서 강도가 높은 클론 32개를 선발하였고, 29개 클론에 대해 전체 또는 부분 염기 서열을 분석하여 DNA 상동성을 조사하였다. DNA 상동성 비교를 통해 생산한 발현 유전자 꼬리표 중에는 비교적 상동 유의성이 인정되어 그 실체를 추정할 수 있는 19개의 클론이 있었다. 특히 곤충의 면역 작용에 직접적으로 관계하는 항세균성 펩타이드 유전자, hemolin 유전자, transferrin 유전자 등 4종의 유전 자원을 확보할 수 있었다.

  • PDF

Preparation and Analysis of Yeast Cell Wall Mannoproteins, Immune Enhancing Materials, from Cell Wall Mutant Saccharomyces cerevisiae

  • Ha Chang-Hoon;Yun Cheol-Won;Paik Hyun-Dong;Kim Seung-Wook;Kang Chang-Won;Hwang Han-Joon;Chang Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.247-255
    • /
    • 2006
  • Yeast cell wall matrix particles are composed entirely of mannoprotein and ${\beta}-glucan$. The mannoproteins of yeast cell wall can systemically enhance the immune system. We previously purified and analyzed alkali-soluble ${\beta}-glucans$ [${\beta}$-(1,3)- and ${\beta}$-(1,6)-glucans] [10]. In the present study, a wild-type strain was first mutagenized with ultraviolet light, and the cell wall mutants were then selected by treatment with 1.0 mg/ml laminarinase (endo-${\beta}$-(1,3)-D-glucanase). Mannoproteins of Saccharomyces cerevisiae were released by laminarinase, purified by concanavalin-A affinity and ion-exchange chromatography. The results indicated that the mutants yielded 3-fold more mannoprotein than the wild-type. The mannoprotein mass of mutant K48L3 was 2.25 mg/100 mg of yeast cell dry mass. Carbohydrate analysis revealed that they contained mannose, glucose, and N-acetylglucosamine. Saccharomyces cerevisiae cell wall components, mannoproteins, are known to interact with macrophages through receptors, thereby inducing release of tumor necrosis factor alpha ($TNF-{\alpha}$) and nitric oxide. Mannoprotein tractions in the present study had a higher macrophage activity of secretion of $TNF-{\alpha}$ and nitric oxide and direct phagocytosis than positive control ($1{\mu}g$ of lipopolysaccharide). In particular, F1 and F3 fractions in mannoproteins of K48L3 enhanced and upregulated the activity of nitric oxide secretion and macrophage phagocytosis by approximately two- and four-fold, respectively.

TCF4-Targeting miR-124 is Differentially Expressed amongst Dendritic Cell Subsets

  • Sun Murray Han;Hye Young Na;Onju Ham;Wanho Choi;Moah Sohn;Seul Hye Ryu;Hyunju In;Ki-Chul Hwang;Chae Gyu Park
    • IMMUNE NETWORK
    • /
    • 제16권1호
    • /
    • pp.61-74
    • /
    • 2016
  • Dendritic cells (DCs) are professional antigen-presenting cells that sample their environment and present antigens to naïve T lymphocytes for the subsequent antigen-specific immune responses. DCs exist in a range of distinct subpopulations including plasmacytoid DCs (pDCs) and classical DCs (cDCs), with the latter consisting of the cDC1 and cDC2 lineages. Although the roles of DC-specific transcription factors across the DC subsets have become understood, the posttranscriptional mechanisms that regulate DC development are yet to be elucidated. MicroRNAs (miRNAs) are pivotal posttranscriptional regulators of gene expression in a myriad of biological processes, but their contribution to the immune system is just beginning to surface. In this study, our in-house probe collection was screened to identify miRNAs possibly involved in DC development and function by targeting the transcripts of relevant mouse transcription factors. Examination of DC subsets from the culture of mouse bone marrow with Flt3 ligand identified high expression of miR-124 which was able to target the transcript of TCF4, a transcription factor critical for the development and homeostasis of pDCs. Further expression profiling of mouse DC subsets isolated from in vitro culture as well as via ex vivo purification demonstrated that miR-124 was outstandingly expressed in CD24+ cDC1 cells compared to in pDCs and CD172α+ cDC2 cells. These results imply that miR-124 is likely involved in the processes of DC subset development by posttranscriptional regulation of a transcription factor(s).

Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis

  • Ahn, Jun-Ho;Hwang, Sung-Hee;Cho, Hyun-Soo;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.302-310
    • /
    • 2019
  • Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and -resistant (A375P/Mdr with acquired resistance and SK-MEL-2 with intrinsic resistance) melanoma cell lines, to reveal the genes and pathways potentially involved in intrinsic and acquired resistance to BRAF inhibitors. A total of 546 differentially expressed genes (DEGs), including 239 up-regulated and 307 down-regulated genes, were identified in both intrinsic and acquired resistant cells. Gene ontology (GO) analysis revealed that the top 10 biological processes associated with these genes included angiogenesis, immune response, cell adhesion, antigen processing and presentation, extracellular matrix organization, osteoblast differentiation, collagen catabolic process, viral entry into host cell, cell migration, and positive regulation of protein kinase B signaling. In addition, using the PAN-THER GO classification system, we showed that the highest enriched GOs targeted by the 546 DEGs were responses to cellular processes (ontology: biological process), binding (ontology: molecular function), and cell subcellular localization (ontology: cellular component). Ingenuity pathway analysis (IPA) network analysis showed a network that was common to two BRAF inhibitorresistant cells. Taken together, the present study may provide a useful platform to further reveal biological processes associated with BRAF inhibitor resistance, and present areas for therapeutic tool development to overcome BRAF inhibitor resistance.

생리적 지표를 이용한 불안과 우울 측정에 대한 고찰 (Physiological Markers in Anxiety and Depression)

  • 안경주;정재심;김윤경;정혜선
    • Journal of Korean Biological Nursing Science
    • /
    • 제10권2호
    • /
    • pp.184-193
    • /
    • 2008
  • Purpose: Anxiety and depression are the concepts that commonly used as an emotional approach in the nursing researches and most of researches have been used questionnaires as a marker of anxiety and depression. There were few researches using physiological markers in measuring anxiety and depression. Methods: Journals published between 1950 and 2007 that include depression and anxiety measuring through physiological markers were reviewed. Results: As in the case of the hypothlamus-pituitary-adrenal axis system, it appeared that cortisol, epinephrine, and norepinephrine belonged to the category of hormones which were responsive to anxiety and depression. Plasma norepinephrine was a marker of the anxiety whereas plasma cortisol was a marker of the depression. The anxiety and depression were correlated with immune and taste, but it considered as an outcome variable not a physiological marker. Conclusion: Catecholamine and cortisol reflect anxiety and depression state. Our findings suggest that further researches are needed to distinguish between markers and outcomes of depression and anxiety using physiological markers.

  • PDF

Extra-gonadal sites of estrogen biosynthesis and function

  • Barakat, Radwa;Oakley, Oliver;Kim, Heehyen;Jin, Jooyoung;Ko, CheMyong Jay
    • BMB Reports
    • /
    • 제49권9호
    • /
    • pp.488-496
    • /
    • 2016
  • Estrogens are the key hormones regulating the development and function of reproductive organs in all vertebrates. Recent evidence indicates that estrogens play important roles in the immune system, cancer development, and other critical biological processes related to human well-being. Obviously, the gonads (ovary and testis) are the primary sites of estrogen synthesis, but estrogens synthesized in extra- gonadal sites play an equally important role in controlling biological activities. Understanding non-gonadal sites of estrogen synthesis and function is crucial and will lead to therapeutic interventions targeting estrogen signaling in disease prevention and treatment. Developing a rationale targeting strategy remains challenging because knowledge of extra-gonadal biosynthesis of estrogens, and the mechanism by which estrogen activity is exerted, is very limited. In this review, we will summarize recent discoveries of extra-gonadal sites of estrogen biosynthesis and their local functions and discuss the significance of the most recent novel discovery of intestinal estrogen biosynthesis.