• Title/Summary/Keyword: biological fertilizer

Search Result 435, Processing Time 0.036 seconds

Effect of Aeration Rates on Emissions of Oxygen and Sulfur compound gases during Composting of Dairy Manure (우분(牛糞) 퇴비화시(堆肥花時) 공기주입률(空氣注入率)이 산소 및 황화합물 가스 배출(排出)에 미치는 영향(影響))

  • Kang, Hang-Won;Zhang, Ruihong;Rhee, In-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.472-481
    • /
    • 2000
  • This experiment used the enclosed bench-scale reactors was conducted to find out optimal aeration rate for reducing the emission of odors and producing the good-quality compost with the mixture of dairy manure and rice straw. The reactors with gas sampler were aerated at four different rates of 0.09, 0.18, 0.90 and $1.79l\;min^{-1}kg^{-1}$dry solids for 574 hours. The oxygen content within composting pile instantly decreased after aeration. Oxygen limitation(below 15%) in the treatments of $0.90l\;min^{-1}kg^{-1}$ and less was exponentially negative relationship with aeration rates and in the range of 35 to 300 hours after aeration. However, the treatment of $1.79l\;min^{-1}kg^{-1}$ didn't show the oxygen limitation. The oxygen consumption rate and the cumulative amount of oxygen consumed by different aeration rates was ranged in $0.80{\sim}1.57O_2g\;h^{-1}\;kg^{-1}VS^{-1}$, $460{\sim}900O_2g\;kg^{-1}VS^{-1}$, respectively, and they were high in the order of 0.90, 1.79, 0.18, $0.09l\;min^{-1}kg^{-1}$. The maximum oxygen consumption rate was estimated in the range of $1.2{\sim}1.3lmin^{-1}kg^{-1}$. The emission concentrations of sulfur compounds such as hydrogen sulfide, sulfur dioxide and methylmercaptan were remarkably high in the initial composting time. Then they were rapidly decreased with the passing of composting time and clearly with increasing aeration rates. Their average concentrations were in the range of 0.03~2.18, 0~0.50, $0.07{\sim}3.38mg\;kg^{-1}$, respectively and high in the order of methylmercaptan, hydrogen sulfide, and sulfur dioxide. Concentrations of sulfur compounds emitted from composting showed exponentially negative relationship at 1% statistically with the oxygen concentration. It was estimated that hydrogen sulfide and methylmercaptan suddenly increased in the level of 5% oxygen concentration and below, that they were little emitted in 15% and over but sulfur dioxide was emitted in the level of 20% oxygen.

  • PDF

Production of Antimicrobial Compounds and Cloning of a dctA Gene Related Uptake of Organic Acids from a Biocontrol Bacterium Pseudomonas Chlororaphis O6 (생물적 방제균 Pseudomonas chlororaphis O6의 길항 물질 생산 및 유기산 흡수에 관련된 dctA 유전자의 클로닝)

  • Han, Song-Hee;Nam, Hyo-Song;Kang, Beom-Ryong;Kim, Kil-Yong;Koo, Bon-Sung;Cho, Baik-Ho;Kim, Young-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.134-144
    • /
    • 2003
  • A rhizobacterium Pseudomonas cholororaphis O6 produced several secondary metabolites, such as phenazines, protease, and HCN that may be involved in inhibition of the growth of phytopathogenic fungi. In field study, P. chlororaphis O6 treatment on wheat seed suppressed root rot disease caused by Fusarium culmorum. The major organic acids of cucumber root exudates were fumaric acid, malic acid, benzoic acid, and succinic acid. Glucose and fructose were major monosaccharides in cucumber root exudates. The total amount of organic acids was ten times higher than that of the sugars. P. chlororaphis O6 grew well on cucumber root exudates. The dctA gene of P. chlororaphis O6 consisted of a 1,335 bp open reading frame with a deduced amino acid sequence of 444 residues, corresponding to a molecular size of about 47 kD and pI 8.2. The deduced dctA sequence has ten putative transmembrane domains, as expected of a membrane-embedded protein. Our results indicated that organic acids in cucumber root exudates may play an important role in providing nutrient source for root colonization of biological control bacteria, and the dctA gene of P. chlororaphis O6 may be an important bacterial trait that is involved in utilization of root exudates.

Changes of Microbial Community Associated with Construction Method and Maintenance Practise on Soil Profile in Golf Courses (지반 조성과 관리방법에 따른 골프장 토양내 미생물 군집의 변화)

  • Moon, Kyung-Hee;Kim, Ki-Dong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.219-228
    • /
    • 2009
  • The construction procedures and artificial turf maintenance program on golf course definitely influence on the distortion of its environment. Soil microbial communities in soil profile were affected directly by those practises on turf areas. In Jeju island, the environmental impact assessment has been required to apply the first quality class granular activated carbon(GAC), which has a high absorbent character to agricultural chemicals, on the soil profiles of golf green system to reduce the pesticide leaching to ground water. This research was carried out to analyze the changes of microbial communities and chemical properties on soil profiles where GAC had been applied at the construction stage at two golf courses in Jeju. The changes of soil microbial population and chemical properties associated with construction methods of soil profile and agrochemical management program were analyzed by monthly at the surface and sub-soil profiles during April through October, 2007. The total numbers of bacteria and fungi, soil moisture content, soil physio-chemical properties were measured on greens and fairways of the both golf courses with different GAC treatment on the green and fairway soil profiles. The results showed that GAC had positive effects on the water holding capacity, pH and EC, however, it did not improved the holding capacity of available nutrients ${NO_3}^-,{NH_4}^+$, and phosphorus by its sorption phenomenon. In microbial count test, the total numbers of bacteria and fungi showed a great variation during sampling dates. That may directly relate to the agrochemical application, however, the ratio of total bacterial number versus total fungus number showed a constant value on a sub-soil of 15~30cm depth. Thus, the construction method of GAC in soil profile, and application of fertilizer and pesticide, both impacted on the changes of microbial population. It's means that the construction method of soil profile and turf management using agro-materials might greatly affect on the turfgrass culture and the environment of golf course.

Diagnosis of the Field-Grown Rice Plant -[1] Diagnostic Criteria by Flag Leaf Analysis- (포장재배(圃場栽培) 수도(水稻)의 영양진단(營養診斷) -1. 지엽분석(止葉分析)에 의(依)한 진단(診斷)-)

  • Park, Hoon
    • Applied Biological Chemistry
    • /
    • v.16 no.1
    • /
    • pp.18-30
    • /
    • 1973
  • The flag and lower leaves (4th or 5th) of rice plant from the field of NPK simple trial and from three low productive area were analyzed in order to find out certain diagnostic criteria of nutritional status at harvest. 1. Nutrient contents in the leaves from no fertilizer, minus nutrient and fertilizer plots revealed each criterion for induced deficiency (severe deficient case induced by other nutrients), deficiency (below the critical concentration), insufficiency (hidden hunger region), sufficiency (luxuary consumption stage) and excess (harmful or toxic level). 2. Nitrogen contents for the above five status was less than 1.0%, 1.0 to 1.2, 1.2 to 1.6, 1.6 to 1.9 and greater than 1.9, respectively. 3. It was less than 0.3%, 0.3 to 0.4, 0.4 to 0.55 and greater than 0.55 for phosphorus $(P_2O_5)$ but excess level was not clear. 4. It was below 0.5%, 0.5 to 0.9, 0.9 to 1.2, 1.2 to 1.4 and above 1.4 for potassium. 5. It was below 4%, 4 to 6, 6 to 11 and above 11 for silicate $(SiO_2)$ and no excess was appeared. 6. Potassium in flag leaf seemed to crow out nitrogen to ear resulting better growth of ear by the inhibition of overgrowth of flag leaf. 7. Phosphorus accelerated the transport of Mg, Si, Mn and K in this order from lower leaf to flag, and retarded that of Ca and N in this order at flowering while potassium accelerated in the order of Mn, and Ca, and retarded in the order of Mg, Si, P and N at milky stage. 8. Transport acceleration index (TAI) expressed as (F_2L_1-F_1L_2)\;100/F_1L_1$ where F and L stand for other nutrient cotents in flag and lower leaf and subscripts indicate the rate of a nutrient applied, appears to be suitable for the effect of the nutrient on the translocation of others. 9. The content of silicate $(SiO_2)$ in the flag was lower than that of lower leaf in the early season cultivation indicating hinderance in translocation or absorption. It was reverse in the normal season cultivation. 10. The infection rate of Helminthosporium frequently occurred in the potassium deficient field seemed to be related more to silicate and nitrogen content than potassium in the flag leaf. 11. Deficiency of a nutrient occured simultaniously with deficiency of a few other ones. 12. Nutritional disorder under the field condition seems mainly to be attributed to macronutrients and the role of micronutrient appears to be none or secondary.

  • PDF

Management of Recycled Nutrient Resources using Livestock Waste in Large-Scale Environment-Friendly Agricultural Complex (광역친환경농업단지의 경축순환자원 양분관리)

  • Moon, Young-Hun;Ahn, Byung-Koo;Cheong, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.177-184
    • /
    • 2012
  • This experiment was carried out to investigate soil properties and the requirement of livestock manure compost in a large-scale environment-friendly agricultural complex (EFAC), Gosan, Wanju-gun, Jeonbuk. Total cultivation area of major crops was 2,353 ha. This complex area included different types of environment-friendly cropping sections (402.9ha) and livestock farming including 21,077 Korean beef cattle, 1,099 dairy cow, and 32,993 hog. Amount of livestock waste carried in to Resource Center for Crop and Livestock Farming (RCCLF) was 32 Mg per day and the production of manure compost was 9,600 Mg per year. The manure contained 1.4% total nitrogen (T-N), 2.7% phosphorus as $P_2O_5$, 2.1% potassium as $K_2O$, 0.9% magnesium as MgO, 2.5% calcium as CaO. Amount of compost used in the EFAC was 6,588 Mg per year. Soil pH values in the EFAC were varied as follows: 78.1% of paddy field soil, 58.2% of upland soil, 60.3% of orchard field soil, and 62.1% of greenhouse soil were in proper range. For the content of soil organic matter, 41.7% of paddy field soil, 46.5% of upland soil, 40.5% of orchard field soil, and 81.4% of greenhouse soil were higher than proper range. The content of available phosphorus was mostly higher than proper value on the different fields except upland soil. The contents of exchangeable $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were also exceeded in the orchard field and greenhouse soils. In addition, microbial population, especially aerobic bacteria, in the EFAC was higher than that in regular farming land.

Effects of Pseudomonas Fluorescens, KR-164 on Plant Pathogenic Microorganisms (식물(植物) 병원성(病源性) 미생물(微生物)에 미치는 Pseudomonas fluorescens, KR-164의 영향(影響))

  • Rhee, Young-Hwan;Kim, Yeong-Yil;Lee, Jae-Pyeong;Kim, Yong-Wong;Kim, Yong-Jae;Lee, Jae-Wha
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.53-59
    • /
    • 1990
  • The antagonistic fluorescent pseudomonas, which was isolated from continuous cropping rhizosphere of pepper and cucumber, was identified as Pseudomonas fluorescens (P.f.). For further study, transformant was derived from the isolated P.f. after spontaneous mutation to give antibiotic resistance to nalidixic acid and rifampicin as marked strain. Both P.f. and transformant strains were used for this study and the results obtained were summarized as follows. 1. One of the most effective antagonistic strain, KR164, was selected against F. solani, F. oxysporum, R. solani and this strain was identified and classified as Pseudomonas fluorescens biotype IV. 2. Transformant, KR1641, was derived from strain KR164 and both strains had the same biological and biochemical characteristics. 3, Mycelial lysis and abnormal mycelia of plant pathogenic fungi were microscopically observed after simultaneous culture of fungus and given bacterial strain. 4. The length of chinese cabbage to the autolyzed became longer with given bacterial strain in dark culture. 5. Percentage of germination, number of leaves, length of height, and length of root in chinese cabbage in pot experiment were improved by inoculation of given bacterial strain. 6. The number of given bacterial strain kept generally stable until 34 days after inoculation of itself in pot experiment. Inoculation of given bacterial strain did affect the number of plant disease fungi to be decreased but did not affect the number of other bacteria, Bacillus, in pot experiment.

  • PDF

Studies on C2H2-C2H4 reducing activities (N2-fixing) in paddy soil (논토양(土壤) 질소고정(窒素固定) 미생물(微生物)의 활성(活性)에 관(關)한 연구(硏究))

  • Lee, Sang-Kyu;Lee, Myeong-Gu;Lim, Sun-Uk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 1977
  • Acetylene-ethylene($C_2H_2-C_2H_4$) assay was carried out to find the heterotrophic nitrogen-fixing activities and distribution of nitrogen fixers in eleven different soil series which are located in Kyeonggi province. Following are the summaries of this study. 1. Acetylene-reducing activities were higher in Gwanghwal, Mangyeong and Buyong series which are derived from fluviomarine deposite than in Yeongsan, Hamchang and Pyeongtack series which are observed from continental alluvial plain. The lowest activities are observed in Yecheon, Hoegog, and Jisan series which are situated in local valley region. 2. Estimated amouts of $N_2$ per annum fixed by $N_2$-fixing heterotrophs were about 3.2kg in fuluvio marine soils, 2.6kg in continental alluvial plain and 2.0kg/10a in local valley region, respectively. 3. Azotobacter and Beijerinckia were not detected in any of the ten different soil series except in Pyeongtaeg series. However, Clostridia, anaerobic nitrogen fixer, was detected in order of ${\times}10^2$. It is assumed that these population are not enough to contribute to the nitrogen supply by the biological fixation in paddy soil. 4. For the assesment of heterotrophic nitrogen fixation in paddy soil, it must be presumed that aerobes, anaerobes and phototrophs which can grow on nitrogen free media may greatly contribute for the asymbiotic netrogen fixation.

  • PDF

Rhizosphere Enhances Removal of Organic Matter and Nitrogen from River Water in Floodplain Filtration (홍수터 여과를 이용한 하천수의 질소와 유기물 제거에 미치는 근권의 효과)

  • Jeong, Byeong-Ryong;Chung, Jong-Bae;Kim, Seung-Hyun;Lee, Young-Deuk;Cho, Hyun-Jong;Baek, Nam-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • If contaminated river water is sprayed over a floodplain, the microbial processes can simultaneously remove organic matter and nitrogen during the infiltration through the sediment profile. The effect of rhizosphere on the removal of organic matter and nitrogen from contaminated river water was investigated using floodplain lysimeters. River water was sprayed at a rate of $68.0L\;m^{-2}\;d^{-1}$ on the top of the lysimeters with or without weed vegetation on the surface, Concentrations of $NO_3$, $NH_4$ and dissolved oxygen (DO), and chemical oxygen demand (COD) and Eh in water were measured as functions of depth for 4 weeks after the system reached a steady state water flow and biological reactions. A significant reductive-condition for denitrification developed in the 30-cm surface profile of lysimeters with weeds. At a depth of 30 cm, COD and $NO_3$-N concentration decreased to 5.2 and $0.9mg\;L^{-1}$ from the respective influent concentrations of 18.2 and $9.8mg\;L^{-1}$. The removal of $NO_3$ in lysimeters with weeds was significantly higher than in those without weeds. Vegetation on the top was assumed to remove $NO_3$ directly by absorption and to create more favorable conditions for denitrification by supply of organic matter and rapid $O_2$ consumption, In the lysimeters without weeds, further removal of $NO_3$ was limited by the lack of an electron donor, i.e. organic matter. These results suggest that the filtration through native floodplains, which include rhizospheres of vegetation on the surface, can be effective for the treatment of contaminated river water.

Effects of Oyster Shell Lime on Barley Growth and Soil Microbe in an Upland Soil (패화석이 보리생육과 토양 미생물상에 미치는 영향)

  • Lee, Young-Han;Sonn, Yeon-Kyu;Lee, Seong-Tae;Heo, Jae-Young;Kim, Min-Keun;Kim, Eun-Seok;Song, Won-Doo;Kim, Dae-Ho;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.610-613
    • /
    • 2012
  • Oyster shell has a high content of $CaCO_3$ to be used as a acidic soil amendment. To enhance productivity of barley and soil microbe in an upland soil, oyster shell and calcium-magnesium carbonate were selected as a soil amendments in this study. A field experiment was treated no treatment (hereafter, control), oyster shell lime $3.09Mg\;ha^{-1}$ and $2.38Mg\;ha^{-1}$, and calcium-magnesium carbonate $2.38Mg\;ha^{-1}$ as amount of lime requirement in silt loam soil. The yield of barley from the oyster shell lime treatment was the highest. The protein content of barley was the highest of 11.1% in the calcium-magnesium carbonate, followed by 10.7% for the control, 10.6% for the oyster shell lime $3.09Mg\;ha^{-1}$, and 10.4% for the oyster shell lime $2.38Mg\;ha^{-1}$. Soil pH value was higher than that of control in harvesting stage. In addition, the population of soil bacteria was highest in oyster shell lime $2.38Mg\;ha^{-1}$, actinomycetes was highest in calcium-magnesium $2.38Mg\;ha^{-1}$. We concluded that the oyster shell lime can be effective to restore soil nutrient and microbe balance in an upland soil.

Assessment of Pre-Harvest Environmental Factors in Domestic Production of Organic Lettuce (국내 유기상추의 생산환경 조사분석)

  • Namgung, Min;Kim, Beom Seok;Heo, Seong Jin;Choi, Yong Beom;Hur, Jang Hyun;Park, Duck Hwan
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.2
    • /
    • pp.88-94
    • /
    • 2014
  • Among pre-harvest environmental factors, increasing attention has been paid to the effects of chemical and microbiological factors on fresh produce. The occurrence and prevalence of these factors have been usually studied with regard to the final products at the post-harvesting stage and/or when they are sold in the market. However, the origin and routes of transmission of both factors remain to be clarified. In the present study, we examined the contamination levels of food-borne pathogens and chemical factors such as pesticide residues and heavy metals in 83 and 43 samples, respectively, including various soil, water, and fertilizer samples, as well as post-harvested and processed samples. Among the organic farming samples, only one pesticide, dimethomorph, was detected in the soil sample, however no pesticides were observed from any other samples in organic farming system. Thus, it was thought that might be contaminated from conventional farm land in the vicinity. Whereas many pesticide residues were detected in conventional farming systems such as soil, fertilizer, water, and fresh produce as expected. Furthermore, heavy metals detected from all tested samples did not shown contamination levels higher than the standard limit. We comparatively assessed the levels of contamination by food-borne pathogens on the samples from organic and conventional farming systems, and found aerobic bacteria at approximately 7 log CFU/g, with no significant differences observed between the two systems. Coliforms were present at lower levels than aerobic bacteria. No human pathogens were present among the coliforms detected, indicating that these bacteria are saprophytes without the ability to cause food-borne illnesses. In contrast, among the high-risk food-borne pathogens, only sporadic cells of Bacillus cereus were found on samples of organic farming system. These data extend previous findings that the most prevalent food-borne pathogen is B. cereus and demonstrate that it spreads to whole living plants via soil.