Rhizosphere Enhances Removal of Organic Matter and Nitrogen from River Water in Floodplain Filtration

홍수터 여과를 이용한 하천수의 질소와 유기물 제거에 미치는 근권의 효과

  • 정병룡 (대구대학교 생명자원학부) ;
  • 정종배 (대구대학교 생명환경학부) ;
  • 김승현 (영남대학교 환경공학과) ;
  • 이영득 (대구대학교 생명환경학부) ;
  • 조현종 (대구대학교 생명환경학부) ;
  • 백남주 (대구대학교 생명자원학부)
  • Received : 2002.12.20
  • Accepted : 2003.01.09
  • Published : 2003.02.28

Abstract

If contaminated river water is sprayed over a floodplain, the microbial processes can simultaneously remove organic matter and nitrogen during the infiltration through the sediment profile. The effect of rhizosphere on the removal of organic matter and nitrogen from contaminated river water was investigated using floodplain lysimeters. River water was sprayed at a rate of $68.0L\;m^{-2}\;d^{-1}$ on the top of the lysimeters with or without weed vegetation on the surface, Concentrations of $NO_3$, $NH_4$ and dissolved oxygen (DO), and chemical oxygen demand (COD) and Eh in water were measured as functions of depth for 4 weeks after the system reached a steady state water flow and biological reactions. A significant reductive-condition for denitrification developed in the 30-cm surface profile of lysimeters with weeds. At a depth of 30 cm, COD and $NO_3$-N concentration decreased to 5.2 and $0.9mg\;L^{-1}$ from the respective influent concentrations of 18.2 and $9.8mg\;L^{-1}$. The removal of $NO_3$ in lysimeters with weeds was significantly higher than in those without weeds. Vegetation on the top was assumed to remove $NO_3$ directly by absorption and to create more favorable conditions for denitrification by supply of organic matter and rapid $O_2$ consumption, In the lysimeters without weeds, further removal of $NO_3$ was limited by the lack of an electron donor, i.e. organic matter. These results suggest that the filtration through native floodplains, which include rhizospheres of vegetation on the surface, can be effective for the treatment of contaminated river water.

하천수를 홍수터에 살포하면 퇴적층을 통과하는 동안 미생물의 작용에 의해 유기물과 질소가 동시에 제거될 수 있는데, 이러한 미생물의 작용에 미치는 근권의 효과를 홍수터 모형을 이용하여 검정하였다. 홍수터 모형은 길이와 작용에 미치는 근권의 효과를 홍수터 모형을 이용하여 검정하였다. 홍수터 모형은 길이와 직경이 각각 135 및 30 cm인 PVC관에 낙동강에서 채취한 홍수터 퇴적물을 채우고 표면에 잡초가 자라는 모형과 자라지 않는 모형으로 구분하여 제작하였다. 하천수는 $68.0L\;m^{-2}\;d^{-1}$ 유속으로 실험기간 동안 표면에 연속적으로 살포하였으며, 모형 내에서 하천수의 흐름과 미생물 반응이 정상상태(Steady state)에 도달한 이후 4주 동안 모형의 여러 깊이에서 물 시료를 채취하여 $NO_3$, $NH_4$, 용존산소, 화학적산소요구량 및 산화환원전위를 측정하였다. 표면에 잡초가 자라는 모형에서는 30 cm 깊이의 표층에서 탈질 작용이 일어날 수 있는 환원상태가 발달하였으며, 30 cm 깊이의 표층에서 탈질 작용이 일어날 수 있는 환원상태가 발달하였으며, 30 cm 깊이에서 측정된 COD와 $NO_3-N$ 농도는 유입수 중의 18.2와 $9.8mg\;L^{-1}$에 비해 각각 5.2와 $0.9mg\;L^{-1}$으로 감소하였다. $NO_3$ 제거효과는 잡초가 자라는 모형에서 현저히 높았으며, 이러한 효과는 잡초에 의한 직접적인 흡수와 근권에서의 유기물 공급과 산소의 신속한 소모에 따른 활발한 탈질작용에 기인하고, 잡초가 없는 모형에서 $NO_3$의 제거가 충분히 일어나지 못한 것은 전자수용체인 유기물의 부족 때문인 것으로 판단되었다. 이상의 결과로 미루어 볼 때 슬러지 발생과 화학약품의 사용이 필요없는 홍수터 여과 기술은 부영양상태의 하천수를 친환경적으로 처리할 수 있는 방법이 될 수 있을 것이다.

Keywords

References

  1. American Public Health Association. 1998. Standard methods for the examinadon of water and wastewater. 20th ed. Washington, D.C.
  2. Bohn, H.L., B.L. McNeal, and G.A. O'connor. 1985. Soil chemistry. John Wiley and Sons, New York
  3. Cho, J.Y., K.W. Han, and J.K. Choi. 2000. Loads of nitrogen and phosphorus from the agricultural watershed in central Korea. Agric. Chem. Biotechnol. 43:254-257
  4. Chung, J.B., B.J. Kim, and J.K. Kirn. 1997. Water pollution in some agricultural areas along Nakdong River. Korean J. Environ. Agric. 16:187-192
  5. Chung, Y.K. 1988. Cation exchange capacity. p. 117-124. In K.H. Han (ed.) Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, Suwon, Korea
  6. Collin, M., and A. Rasmuson. 1988. A comparison of gas diffusivity models for unsaturated porous media. Soil Sci. Soc.Am. J. 52:1559-1565 https://doi.org/10.2136/sssaj1988.03615995005200060007x
  7. DeSimone, L.A., and B.L. Howes. 1998. Nitrogen transport and transformation in a shallow aquifer receiving wastewater discharge: a mass balance approach. Water Resour. Res. 34:271-285 https://doi.org/10.1029/97WR03040
  8. Ha, H.S., S.T. Kim, S.H. Kim, J.B. Chung, B.R. Jeong, Y.D. Lee, J.S. Eom, and S.H. Ji. 2002. Removal of organic matter and nitrogen from river water in a model system of floodplain filtration. J. Korean Soc. Agric. Chem. Biotechnol. 45:84-91
  9. Jung, Y.S., J.E. Yang, Y.K. Joo, J.Y. Lee, Y.S. Park, M.H. Choi, and S.C. Choi. 1997. Water quality of streams and agricultural wells related to different agricultural practices in small catchments of Han River basin. Korean J. Environ. Agric. 16:199-205
  10. Kwun, S.K. 1998. Management, improvement and perspective on nonpoint sources of water pollution in Korea. J. Korean Soc. Environ. Engin. 20:1497-1510
  11. Miller, R.W., and R.L. Donahue. 1990. Soils, an introduction to soils and plant growth. 6th ed. Prentice-Hall Inc., Englewood Cliffs, NJ
  12. Miller, W.P., and D.M. Miller. 1987. A micro-pipete method for soil mechanical analysis. Commun. Soil Sci. Plant Anal. 18:1-15 https://doi.org/10.1080/00103628709367799
  13. Nelson, D.W., and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter, p. 539-579. In A.L Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI
  14. Ouyang, Y., and L. Boersma. 1992. Dynamic oxygen and carbon dioxide exchange between soil and atmosphere: I. model development. Soil Sci. Soc. Am. J. 56:1695-1702 https://doi.org/10.2136/sssaj1992.03615995005600060006x
  15. Patrick, W.H., and A. Jugsujinda. 1992. Sequential reduction oxidation of inorganic nitrogen, manganese and iron in flooded soil. Soil Sci. Soc. Am. J. 56:1071-1073 https://doi.org/10.2136/sssaj1992.03615995005600040011x
  16. Paul, E.A., and F.E. dark. 1989. Soil microbiology and biochemistry. Academic Press Inc., New York
  17. Smith, R.L., and J.H. Duff. 1988. Denitrification in a sand and gravel aquifer. Appl. Environ. Microbiol. 54:1071-1078
  18. Vance, G.F., G.M. Pierzynski, and J.T. Sims. 1994. Soil and environmental quality. Lewis Publishers, Boca Raton, FL