• Title/Summary/Keyword: biological control agent

Search Result 384, Processing Time 0.035 seconds

Isolation and Characterization of an Antifungal and Plant Growth-Promoting Microbe

  • Park, Se Won;Yang, Hee-Jong;Seo, Ji Won;Kim, Jinwon;Jeong, Su-ji;Ha, Gwangsu;Ryu, Myeong Seon;Yang, Hee Gun;Jeong, Do-Youn;Lee, Hyang Burm
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.441-454
    • /
    • 2021
  • Fungal diseases including anthracnose, stem rot, blight, wilting, and root rot of crops are caused by phytopathogens such as Colletotrichum species, Sclerotinia sclerotiorum, Phytophthora species, and Fusarium oxysporum and F. solani which threaten the production of chili pepper. In this study, to identify biological control agents (BCAs) of phytopathogenic fungi, potentially useful Bacillus species were isolated from the field soils. We screened out five Bacillus strains with antagonistic capacity that are efficiently inhibiting the growth of phytopathogenic fungi. Bacillus species were characterized by the production of extracellular enzymes, siderophores, and indole-3-acetic acid (IAA). Furthermore, the influence of bacterial strains on the plant growth promoting activity and seedling vigor index were assessed using Brassica juncea as a model plant. Inoculation with Bacillus subtilis SRCM 121379 significantly increased the length of B. juncea shoots and roots by 45.6% and 52.0%, respectively. Among the bacterial isolates, Bacillus subtilis SRCM 121379 showed the superior enzyme activities, antagonistic capacity and plant growth promoting effects. Based on the experimental results, Bacillus subtilis SRCM 121379 (GenBank accession no. NR027552) was finally selected as a BCA candidate.

Biological control of Pythium damping-off of cucumber by Bacillus stearothermophilus YC4194 (Bacillus stearothermophilus YC4194에 의한 Pythium 모잘록병의 생물학적 방제)

  • Yang, Hyun-Sook;Sohn, Hwang-Bae;Chung, Young-Ryun
    • Research in Plant Disease
    • /
    • v.8 no.4
    • /
    • pp.234-238
    • /
    • 2002
  • In vitro and in vivo activities of a biocontrol agent, Bacillus stearothermophilus strain YC4194 was evaluated for the control of Pythium damping-off of cucumber. B. stearothermophilus YC4194 inhibited germination of cystospores and formation of zoosporangia of Pythium aphanidermatum in vitro. Incorporation of a bentonite and talc based formulation(10$^{9}$ cfu/g) of B. stearothermophilus YC4194 to the nursery soils (10 g/ι soil) resulted In a significant (p=0.01) reduction in the disease severity of cucumber damping-off after inoculation with P. aphanidermatum. The control efficacy of B. stearothermophilus YC4194 formulation was not different from that of the fungicides, dimethomorph, metalaxyl, ethaboxam. When the cucumber plants were transplanted to the soil inoculated with P. aphanidermatum zoospores, the B. stearothermophilus YC4194 maintained the high population density in rhizosphere soil upto 10$^{7}$ cfu/g until 15 days after treatment.

Biological control efficacy on Sclerotinia rot(Sclerotinia sclerotiorum) by the use of antifungal agent some Bacillus sp.

  • Hong, Yeon-Kyu;Lee, Bong-Choon;Shin, Dong-Beom;Hyun, Jong-Nae;Kang, Hang-Won;Park, Sung-Tae
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.106-107
    • /
    • 2003
  • The effect of biological control agent Bacillus sp. (BAC03-3-1, BAC03-3-2, BAC02-4) on pre- and postemergence Sclerotinia rot of perilla (Perilla frutescens var. japonica) caused by Sclerotinia sclerotiorum was determined from greenhouse field trials. The ability of this antagonist to reduce germination of sclerotia of S. sclerotiorum was also evaluated. In the greenhouse, suspension of BAC03-3-1 application as root drench of perilla, which provided as little as 10$\^$7/ cells/ $m\ell$ per gram of soil, significantly increased plant stand in pathogen-infested soil over that in the untreated control. All three isolates reduced the germination of sclerotia of S. sclerotiorum in loamy sand soils in the greenhouse. In loamy sand amended with rice bran the sclerotial germination was inversely correlated (r = -0.79) with perilla stand in the greenhouse. However, a higher rate of bacterial suspension with rice bran(Ig dwt./100g soil) than that applied with bacterial suspensions only was necessary to achieve a comparable reduction in sclerotial germination. In field study, all three isolates added to soil to provide 10$\^$7/ cells/$m\ell$ per gram significantly prevented Sclerotinia rot (73-85%) after 35 days of growth. The isolate BAC02-4, BAC03-3-1 and BAC03-3-2 gave final stands of 65 to 75, 60 to 70, and 55 to 60%, respectively. The addition of rice bran(1 %) to loamy sand in the field resulted in a 10-fold increase in propagule numbers of the three isolates within 10 days of application.

  • PDF

Biological Control of the Brown Planthopper by a Mermithid Nematode (Mermithid 선충을 이용한 벼멸구의 생물적방제)

  • ;Harry K. Kaya
    • Korean journal of applied entomology
    • /
    • v.33 no.4
    • /
    • pp.207-215
    • /
    • 1994
  • The brown planthopper (BPH), Nilaparuata lugens, is the major pest 01 nce in Asla. Cument control tactics rely pnmalily on chemical ~nsecticides and resistant nce varieties In Korea, the most important biolog~cal conb-ol agent appears to be the naturally-occuning, mermlthid nematode, Agarnermrs unka. Although parasitism of BPH is highly variable from place to place and from year to year. the rnermithid is a promising biological control agent because it reduces the fecundity of the host and ultimately causes its death. The memithid has only one generation per year compared to the three to four generations of BPH, but the mermithid lemales stagger their egg production so that many individuals in all BPH generations are parastized. Augmentation of this rnermithld into BPH populations is only psslble on a limited scale because it is an obligate parasite and mass production technology has yet to be developed. Conservation of naturally-occumng populations through cultural techniques and the use of compatible resistant rice varieties and chemical insecticides may lead to an effective integrated pest management program for BPH.

  • PDF

Use of Quantitative Models to Describe the Efficacy of Inundative Biological Control of Fusarium Wilt of Cucumber

  • Singh, Pushpinder P.;Benbi, Dinesh K.;Young, Ryun-Chung
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.129-132
    • /
    • 2003
  • Fusarium wilt of cucumber caused by Fusarium oxy-sporum f. sp. cucumerinum is a serious vascular disease worldwide. Biological control of Fusarium wilt in several crops has been accomplished by introducing non-pathogenic Fusarium sup. and other biocontrol agents in soil or in infection courts. In this study, quantitative models were used to determine the biocontrol efficacy of inundatively applied antagonist formulations and the length of their effectiveness in controlling Fusarium wilt of cucumber. Quantitative model of the form [Y=L (1${-exp}^{-kx}$)] best described the relationship between disease incidence (Y, %) and inoculum density (X) of isolates F51 and F55. Isolate F51 was selected as a more virulent isolate based on the extent of its effectiveness in causing the wilt disease. The degree of disease control (Xi/X) obtained with the density of the biocontrol agent (Z), was described by the model [Xi/X=A (1${-exp}^{-cz}$)]. The zeolite-based antagonist formulation amended with chitosan (ZAC) was better at lower rates of application and peaked at around 5 g/ kg of the potting medium, whereas the peat-based antagonist formulation (PA) peaked at around 10 g/kg of the potting medium. ZAC formulation provided significantly better suppression of Fusarium wilt as described by the curvilinear relationship of the type Y= a+bX+c$X^2$, where Y represents percent disease incidence and X represents sustaining effect of the biocontrol agent.

Reduction of biofouling using vanillin as a quorum sensing inhibitory agent in membrane bioreactors for wastewater treatment

  • Nam, AnNa;Kweon, JiHyang;Ryu, JunHee;Lade, Harshad;Lee, ChungHak
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.189-203
    • /
    • 2015
  • Membrane biofouling impedes wide application of membrane bioreactor (MBR) for wastewater treatment. Recently, quorum sensing (QS) mechanisms are accounted for one of major mechanisms in biofouling of MBRs. In this study, vanillin was applied to investigate reduction of biofouling in MBRs. MBR sludge was analyzed to contain QS signal molecules by cross-feeding biosensor assay and HPLC. In addition, the inhibitory activity of vanillin against bacterial quorum sensing was verified using an indicator strain CV026. The vanillin doses greater than 125 mg/L to 100 mL of MBR sludge showed 25% reduction of biofilm formed on the membrane surfaces. Two MBRs, i.e., a typical MBR as a control and an MBR with vanillin, were operated. The TMP increases of the control MBR were more rapid compared to those of the MBR with the vanillin dose of 250 mg/L. The treatment efficiencies of the two MBRs on organic removal and MLSS were maintained relatively constant. Extracellular polymeric substance concentrations measured at the end of the MBR operation were 173 mg/g biocake for the control MBR and 119 mg/g biocake for the MBR with vanillin. Vanillin shows great potential as an anti-biofouling agent for MBRs without any interference on microbial activity for wastewater treatment.

Development of Antagonistic Microorganism for Biological Control of Pythium Blight of Turfgrass (잔디 피시움마름병(Pythium blight)의 생물학적 방제를 위한 길항 미생물의 선발과 효력 검정)

  • Jung, Woo-Chul;Shin, Taek-Su;Do, Ki-Suk;Kim, Won-Kuk;Lee, Jae-Ho;Choi, Ki-Hyun
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.260-266
    • /
    • 2006
  • Pythium blight caused by Pythium spp. is one of major diseases in putting green of golf course. In this study, microorganisms which are anatgonistic to Pythium aphanidermatum, a pathogen of pythium blight, were selected primary through in vitro tests, dual culture method and triple layer agar diffusion method. In vivo test against pythium blight were conducted to select the best candidate biocontrol microorganism by pot experiment in a plastic house. Bacillus subtilis GB-0365 was finally selected as a biocontrol agent against pythium blight. Relative Performance Indies(RPI) was used as a criterion of selecting potential biocontrol agent. B. subtilis GB-0365 showed resistance to major synthetic agrochemicals used in golf course. Alternative application of synthetic agrochemicals and B. subtilis GB-0365 was most effective to successfully contol pythium blight. B. subtilis GB-0365 suppressed the development of pythium bight of bentgrass by 56.4% as compared to non-treated control and its disease control efficacy was 60.9% of a synthetic fungicide Oxapro(WP) efficacy. B. subtilis GB-0365 has a potential to be a biocontrol agent for control of pythium blight.

A Study on Control Possibility of Ambrosia trifida L., an Invasive Alien Plant by the Feeding of Ophraella communa LeSage (돼지풀잎벌레의 섭식에 의한 생태계교란 식물인 단풍잎돼지풀의 제어 가능성 연구)

  • SooIn Lee;JaeHoon Park;EuiJoo Kim;JiWon Park;JungMin Lee;YoonSeo Kim;SeHee Kim;YeoBin Park;EungPill Lee
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.184-195
    • /
    • 2023
  • To develop an effective management plan for Ambrosia trifida L., an invasive alien plant in Korea, we assessed the potential of Ophraella communa LeSage as a biological control agent. This involved investigating the host specificity of the herbivore Ophraella communa LeSage, its annual travel distance, and the impact of this insect on the fitness of Ambrosia trifida L. We confirmed the host plant preference of Ophraella communa LeSage. The travel distance of this insect was determined by monitoring its appearance in selected Ambrosia trifida L. communities without these insects at distances of 10, 20, 30, and 100 meters, based on the locations where the presence of Ophraella communa LeSage was observed. The growth, reproductive, and physiological responses of Ambrosia trifida L. were measured according to feeding by Ophraella communa LeSage. As a result, Ophraella communa LeSage fed on only three taxa and moved short distances within a radius of 30 m per year from the host. The feeding behavior of the herbivore had a negative impact on the growth, reproductive, and physiological responses of Ambrosia trifida L. And the plant's growth and reproduction improved with increasing distance from the herbivore. Furthermore, the introduction of herbivores was able to control over 90% of Ambrosia trifida L. when the coverage of the Ambrosia trifida L. group was below 50%. However, the effectiveness of the removal decreased when the coverage exceeded 90%. These results are likely to be utilized by Ophraella communa LeSage as an ecological control agent. It is advantageous to introduce them in spring (May) when the coverage is low to maximize the effectiveness of control.