• Title/Summary/Keyword: biological aging

Search Result 461, Processing Time 0.025 seconds

Effect of Saponin with Antioxidant Activity on Matrix Metalloproteinase in Human Dermal Fibroblasts (항산화 효능을 가진 사포닌이 사람섬유아세포에서 기질 금속 단백질 분해효소에 미치는 영향)

  • Park, Hye-Jung;Kim, Moon-Moo;Lee, Dong-Hwan
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1266-1273
    • /
    • 2011
  • Saponin is a main component of ginseng widely known as an oriental traditional medicinal ingredient. A variety of biological effects of saponin has been reported, but its action related to skin regeneration has remained unclear so far. In this study, the effect of saponin on matrix metalloproteinase as well as its antioxidant effect in cell free system was examined in human dermal fibroblasts. First of all, as a result of investigating the effect of saponin on cell viability using MTT assay, it was shown to increase cell viability below 10 ${\mu}g$/ml, but it also showed cytotoxicity above 25 ${\mu}g$/ml. The antioxidant effect of saponin was exerted by inhibition of $H_2O_2$ in addition to reducing power above 1 ${\mu}g$/ml. In particular, saponin showed a protective effect on DNA oxidation. Furthermore, it was observed that saponin activates MMP-2 and increases MMP-1 activity in gelatin and casein zymography analyses, respectively, indicating that saponin could have potential a therapeutic agent for anti-aging and skin regeneration.

Effects of Citrus sunki Peel Extract on Matrix Metalloproteinase-1 Expression (진귤 과피 추출물의 MMP-1 발현조절 효과)

  • Han, Gu-Seul;Lee, Sun-Ryung
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1553-1556
    • /
    • 2013
  • Flavonoids are one of the major components found in the peels of citrus fruits. Present evidence has suggested that polymethoxyflavonoids, including nobiletin and tangeretin isolated from Citrus sunki, have many biological properties, such as anti-inflammatory, anti-oxidant, and anti-obesity capabilities. Here, we investigated the effect of Citrus sunki peel extract and its possible mechanisms on oxidative stress-induced MMP-1 expression, a major marker of skin photoaging. $H_2O_2$ induced MMP-1 expression in a dose- and time-dependent manner. Extract of Citrus sunki peel (1-25 ${\mu}g/ml$) dose-dependently decreased MMP-1 mRNA levels. When $H_2O_2$ was combined with Citrus sunki peel extract, the phosphorylation of ERK was further decreased compared to a single treatment with $H_2O_2$ alone. Moreover, U0216, an MEK inhibitor, markedly prevented the production of MMP-1. These data suggest that Citrus sunki peel extract has demonstrated protective activity against oxidative damage on MMP-1 expression, and ERK MAP kinase may be involved.

Screening of Functional Materials from Solvent Fractions of Apple Flower Leaf Extract (사과꽃잎 추출물의 용매 분획으로부터 기능성 소재의 탐색)

  • Choi, Sun-Ju;Cho, Eun-Ah;Cho, Eun-Hye;Jeong, Yoon-Joo;Ku, Chang-Sub;Ha, Byung-Jhip;Chae, Hee-Jeong
    • KSBB Journal
    • /
    • v.26 no.2
    • /
    • pp.165-171
    • /
    • 2011
  • Fractional solvent extraction by organic solvents such as hexane, chloroform, ethylacetate, and butanol was carried out using 70% ethanol extract of apple flower leaves. Biological activities including antioxidant, whitening, antimicrobial and anti-wrinkle activities were investigated and bio-active materials of the extracts were identified using GC/MSD. Among the tested solvent fractions, ethylacetate fraction showed the highest total polyphenol content (1218.94 ${\mu}g/mL$), and flavonoid (140 ${\mu}g/mL$). The DPPH radical scavenging activities was over 80% at a dry matterbased concentration of 200 ${\mu}g/{\mu}L$ and SOD-like activity was over 90% at 50 ${\mu}g/mL$ concentration in ethylacetate fraction that was slightly lower than of ascorbic aicd. Tyrosinase inhibition activity related to skin-whitening was over 60% by ethylacetate fraction of 100 ${\mu}g/mL$. As an anti-aging effect, elastase inhibitory activity was about 45% in ethylacetate fraction. Also, it showed a significantly antimicrobial activity against P. acenes. From GC/MSD analysis, a characteristic peak of high content in ethylacetate fraction was identified as kaempferol, which has been reported as a bioactive compound.

Approximate Entropy of hypertension: Effect of Anesthesia (정상혈압환자와 고혈압환자의 마취전후의 근사엔트로피의 비교)

  • Yum, M.K.;Kim, H.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.368-371
    • /
    • 1996
  • Background: Recently, measure of heart rate variability and the nonlinear "complexity" of heart rate dynamics have been used as indicators of cardiovascular health. Several investigators have demonstrated that heart rate variability decreased in aging, congestive heart failure and coronary heart disease. Because hypertensive patients showed alternation of cardiovascular homeostasis, we designed this study to evaluate the effect of anesthesia in hypertensive patients with approximate entropy (ApEn). Methods: With informed consent, eighteen normotensive patients and eighteen hypertensive patients were given no premedication. ECG data were collected from 10 minutes before induction to 15 minutes after induction. Collected ECG data were stored into computer binary files. We calculated ApEn from the collected ECG data. Results: Before induction, ApEn of hypertensive patients was significantly lower than normotensive patients(p<0.05). During induction and maintain of anesthesia, there was no difference of ApEn between two groups. During induction and maintain of anesthesia, in normotensive group, ApEn was significantly lower than that of preinduction(p<0.05). And ApEn during maintain of anesthesia was lower than that of induction(p<0.05). During maintain of anesthesia, in hypertensive group, ApEn was significantly lower than that of preinduction(p<0.05). Conclusions: Before induction, ApTn of hypertensive patients is significantly lower than normotensive patients. As anesthesia was deepened, ApEn of two groups were decreased. Because the baroreflex of hypertensive patients is already decreased, decreasing of ApEn of hypertensive patients during anesthesia is less than that of normotnesive patients.

  • PDF

UB-IOT Modeling for Pattern Analysis of the Real-Time Biological Data (실시간 생체 데이터의 패턴분석을 위한 UB-IOT 모델링)

  • Shin, Yoon Hwan;Shin, Ye Ho;Park, Hyun Woo;Ryu, Keun Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.2
    • /
    • pp.95-106
    • /
    • 2016
  • Biometric data may appear different depending on the person and sasang Medicine has a close relationship with the Department. Biometric data not only mean a human heart rate, a blood pressure, a heart rate, and the past medical history, degree of aging, body mass index, but also is used as a reference measure for determining the state of health of the person. So biometric data should be reproduced for the application purposes, depending on their applications. In previous studies, because the biometric data is changed in real time and applies only to snap shut at the time of the continuity of the current time is excluded. Therefore, in this study in order to solve this problem, we propose a biometric data patton analysis model comprising a continuity of time in the big data environment consisting of biometric data. The proposed model can help determine the choice of needle position carefully when using the electronic acupuncture for care and health promotion.

Effect of Alginic Acid-Added Functional Drink(HAEJOMIIN)in Brown Angae(Undaria pinnatifida) on Obesity and Biological Activity of SD Rats (미역(Undaria pinnatifida)의 알긴산-첨가 기능성 음료(해조미인)가 흰쥐의 비만 및 생리활성에 미치는 영향)

  • 최진호;김동우
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.361-370
    • /
    • 1997
  • Sprague-Dawley male rats were fed experimental diet, and also were orally daministerred with 3.0% ultra low viscosity (ULV) sodium alginate-added functional drink(AL-3.0% group : HAEJOMIN), 5.0% polyedxtrose(PD)-added drink(PD-5.0group) and 2.5% polydextrose-added drink(PD-2.5 group) for 8 weeks. Effect of rhese dietary fiber-added functional drinks on body weight, feed and gross efficincies, triglyceride and cholesterol levels, LDL- cholesterol levels, hydroxyl radical and malondialdehyde levels, and superoxide dismutase (SOD) activity in serum of SD rats were evaluated. Administration of AL-3.0 drink and PD-5.0 drink resulted in a marked inhibition in increase of body weight compared with control and PD-2.5 groups for 8 weeks. Inhibition effect in body weight in 3.0% alginic acid-added drink )AL-3.0 froup_ showed a same trend in 5.0% polydextrose(PD)-added drink (PD-5.0 group)(p<0.001). Therefore, it is found that inhibition effects of obesity in 3.0% alginic acid-added drink were higher 2 times than that in same concentration of polydextrose(PD)-added drink. Triglyceride and cholesterol levels in AL-3.0 and PD-5.0 groups significantly decreased to 25$\sim$30% compared with control group(p<0.01$\sim$0.001), but there were no significant differences in these drinks. LDL-cholesterol levels in AL-3.0 group significantly decreased about 15% compared with PD-5.0 group, but atherogenic index in AL-3, 0 group showed a similar trend to that in PD-5.0 group. Hydroxyl radical formations and lipid peroxide(LPO) levels in AL-3, 0 and PD-5.0 groups significantly decreased to 15% and 20%, respectively, compared with control group(p, 0.05$\sim$0.01), but there were no significant differences in these drinks. Superoxide, dismutase(SOD) activity in AL-3.0 group significantly higher (about 255) than those in control and PD-5.0 groups(p<0.01). These results suggest that administration of ULV-sodium alginate-added functional drink(HAEJOMIIN) effectively can not only inhibit obesity, but also can intervent chronic degenerative disease and aging process.

  • PDF

Agastache rugosa Kuntze Attenuates UVB-Induced Photoaging in Hairless Mice through the Regulation of MAPK/AP-1 and TGF-β/Smad Pathways

  • Yun, Mann-Seok;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1349-1360
    • /
    • 2019
  • Chronic exposure to ultraviolet (UV) radiation, regarded as a major cause of extrinsic aging or photoaging characterized by wrinkle formation and skin dehydration, exerts adverse effects on skin by causing the overproduction of reactive oxygen species. Agastache rugosa Kuntze, known as Korean mint, possesses a wide spectrum of biological properties including anti-oxidation, anti-inflammation, and anti-atherosclerosis. Previous studies have reported that A. rugosa protected human keratinocytes against UVB irradiation by restoring the anti-oxidant defense system. However, the anti-photoaging effect of A. rugosa extract (ARE) in animal models has not yet been evaluated. ARE was orally administered to hairless mice at doses of 100 or 250 mg/kg/day along with UVB exposure for 12 weeks. ARE histologically improved UVB-induced wrinkle formation, epidermal thickening, erythema, and hyperpigmentation. In addition, ARE recovered skin moisture by improving skin hydration and transepidermal water loss (TEWL). Along with this, ARE increased hyaluronic acid levels by upregulating HA synthase genes. ARE markedly increased the density of collagen and the amounts of hydroxypoline via two pathways. First, ARE significantly downregulated the mRNA expression of matrix metalloproteinases responsible for collagen degradation by inactivating the mitogen-activated protein kinase/activator protein 1 pathway. Second, ARE stimulated the transforming growth factor beta/Smad signaling, consequently raising the mRNA levels of collagen-related genes. In addition, ARE not only increased the mRNA expression of anti-oxidant enzymes but also decreased inflammatory cytokines by blocking the protein expression of nuclear factor kappa B. Collectively, our findings suggest that A. rugosa may be a potential preventive and therapeutic agent for photoaging.

Inhibitory Effects on Oral Microbial Activity and Production of Lipopolysaccharides-Induced Pro-Inflammatory Mediators in Raw264.7 Macrophages of Ethanol Extract of Perilla flutescens (L.) Britton

  • Jeong, Moon-Jin;Lim, Do-Seon;Lee, Myoung-Hwa;Heo, Kyungwon;Kim, Han-Hong;Jeong, Soon-Jeong
    • Journal of dental hygiene science
    • /
    • v.20 no.4
    • /
    • pp.213-220
    • /
    • 2020
  • Background: The leaves of Perilla frutescens, commonly called perilla and used for food in Korea, contain components with a variety of biological effects and potential therapeutic applications. The purpose of this study was to identify the components of 70% ethanol extracted Perilla frutescens (EEPF) and determine its inhibitory effects on oral microbial activity and production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharides (LPS)-stimulated Raw264.7 macrophages, consequently, to confirm the possibility of using EEPF as a functional component for improving the oral environment and preventing inflammation. Methods: One kg of P. frutescens leaves was extracted with 70% ethanol and dried at -70℃. EEPF was analyzed using high-performance liquid chromatography analysis, and antimicrobial activity against oral microorganisms was revealed using the disk diffusion test. Cell viability was elucidated using a methylthiazolydiphenyl-tetrazolium bromide assay, and the effect of EEPF on LPS-induced morphological variation was confirmed through microscopic observation. The effect of EEPF on LPS-induced production of pro-inflammatory mediators, NO and PGE2 was confirmed by the NO assay and PGE2 enzyme-linked immunosorbent assay. Results: The main component of EEPF was rosemarinic acid, and EEPF showed weak anti-bacterial and anti-fungal effects against microorganisms living in the oral cavity. EEPF did not show toxicity to Raw264.7 macrophages and had inhibitory effects on the morphological variations and production of pro-inflammatory mediators, NO and PGE2 in LPS-stimulated Raw264.7 macrophages. Conclusion: EEPF can be used as a functional material for improving the oral environment through the control of oral microorganisms and for modulating inflammation by inhibiting the production of inflammatory mediators.

Combined Analysis Using Functional Connectivity of Default Mode Network Based on Independent Component Analysis of Resting State fMRI and Structural Connectivity Using Diffusion Tensor Imaging Tractography (휴지기 기능적 자기공명영상의 독립성분분석기법 기반 내정상태 네트워크 기능 연결성과 확산텐서영상의 트랙토그래피 기법을 이용한 구조 연결성의 통합적 분석)

  • Choi, Hyejeong;Chang, Yongmin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.684-694
    • /
    • 2021
  • Resting-state Functional Magnetic Resonance Imaging(fMRI) data detects the temporal correlations in Blood Oxygen Level Dependent(BOLD) signal and these temporal correlations are regarded to reflect intrinsic cortical connectivity, which is deactivated during attention demanding, non-self referential tasks, called Default Mode Network(DMN). The relationship between fMRI and anatomical connectivity has not been studied in detail, however, the preceded studies have tried to clarify this relationship using Diffusion Tensor Imaging(DTI) and fMRI. These studies use method that fMRI data assists DTI data or vice versa and it is used as guider to perform DTI tractography on the brain image. In this study, we hypothesized that functional connectivity in resting state would reflect anatomical connectivity of DMN and the combined images include information of fMRI and DTI showed visible connection between brain regions related in DMN. In the previous study, functional connectivity was determined by subjective region of interest method. However, in this study, functional connectivity was determined by objective and advanced method through Independent Component Analysis. There was a stronger connection between Posterior Congulate Cortex(PCC) and PHG(Parahippocampa Gyrus) than Anterior Cingulate Cortex(ACC) and PCC. This technique might be used in several clinical field and will be the basis for future studies related to aging and the brain diseases, which are needed to be translated not only functional connectivity, but structural connectivity.

Inhibitory Effects of Standardized Leonurus japonicus Extract and Its Bioactive Leonurine on TNF-α-Induced Muscle Atrophy in L6 Myotubes

  • Lee, Jiyeon;Kim, Changhee;Lee, Hyerin;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1896-1904
    • /
    • 2020
  • Muscle atrophy, characterized by a reduced number and size of myofibers, occurs due to immobilization, aging, and several chronic diseases. Leonurus japonicus, belonging to the Labiatae family, is widely used as a traditional medicine in Korea, China, and Japan. Previous studies have reported that L. japonicus has various physiological activities, such as anti-bacteria, anti-cancer, and liver protection. Leonurine, which is a major bioactive in L. japonicas, is known to possess biological effects including anti-inflammation, anti-fibrosis, anti-angiogenesis, and anti-diabetes. However, the preventive effects of L. japonicas and leonurine on muscle have not been reported. The current study aimed to determine the inhibitory effects of standardized L. japonicus extract (LJE) and leonurine on muscle atrophy by clarifying their underlying molecular mechanisms in tumor necrosis factor-alpha (TNF-α)-stimulated L6 myotubes. LJE and leonurine stimulated the phosphatidylinositol 3-kinase/Akt pathway that was reduced by TNF-α treatment. LJE and leonurine not only increased the mammalian target of rapamycin pathway for protein anabolism but also decreased the mRNA expression of E3 ubiquitin ligases by blocking the translocation of Forkhead box O, which is closely linked with proteolysis. Additionally, LJE and leonurine alleviated inflammatory responses by downregulating TNF-α and interleukin-6 mRNA expression and reducing the protein expression of nuclear factor-kappa B, a major transcriptional factor of proinflammatory cytokines. Collectively, LJE and leonurine have potential as therapeutic candidates for inhibiting the development of skeletal muscle atrophy by activating the PI3K/Akt pathway and reducing inflammatory responses.