• Title/Summary/Keyword: biological active peptide

Search Result 52, Processing Time 0.029 seconds

In silico Prediction and In vitro Screening of Biological Activities and Pharmacokinetics for the Major Compounds in Chong Myung Tang (가상 검색 및 시험관 시험을 이용한 총명탕 중 주성분들에 대한 약물작용 및 대사 예측)

  • Kwon, Young-Ee
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.463-468
    • /
    • 2007
  • Chong Myung Tang is consisted of three medicinal herbs (Acori Graminei Rhizoma, Polygalae Radix and Hoelen cum Radix). It has been used as a medicine for the purpose of learning and memory improvement. In this paper, Chong Myung Tang was screened the biological activities for Alzheimer's disease. The extract (70% ethanol) of Acari Graminei Rhizoma (1 mg/ml) showed that acetylcholinesterase (AChE) and amyloid beta ($A{\beta}$) peptide aggregation inhibitory potency are 43.1% and 76.5%, respectively. The extract of Polygalae Radix showed inhibitory activity against $A{\beta}_{1-42}$ peptide aggregation (51.5%). To predict the drug-likeness, oral absorption ability; blood-brain barrier (BBB) penetraion rate, mutagenecity and carcinogenicity; in silico screening was performed against 16 compounds in the three medicinal herbs. According to the results, all compounds have appropriate chemical structures as medicines. The six compounds in Acori Graminei Rhizoma and the five compounds in Hoelen cum Radix showed excellent oral absorption rate and BBB penetration rate. The four compounds in Polygalae Radix showed excellent oral absorption rate, but their BBB penetration was presented low rate. And, the extract of Hoelen cum Radix didn't show AChE and $A{\beta}_{1-42}$ peptide aggregation inhibitory activities in vitro. Therefore, their activity in brain may be other mechanism. According to all of the results, in silico prediction technology is convenient and effective to determine biological active compounds in medicinal herbs.

A study on the Synthesis and Biological Activity of Nucleoside Chemotherapeutic Agents (핵산계 화학요법제의 합성 및 생물활성에 관한 연구)

  • 강신원;김경희;신정희;이봉헌;장태식
    • Korean Journal of Microbiology
    • /
    • v.29 no.6
    • /
    • pp.353-360
    • /
    • 1991
  • 5-substituted uridine(I,Br,Cl), 5'-amino-5'-deoxyuridine conjugates of amino acid, peptide and penicillin G, 5'-monophosphate uridine derivatives and 5'-monophosphate-fatty acid detrivatives were chemically synthesized. Their biological activities were determined as MIC and IC/sub 50/ unit against various pathogenic microorganisms in vitro. 5'-amino-5'-deoxyuridine-cyclo(Phe-Asp)(23), 5-iodo-5'-amino-deoxyuridine-penicillin G(26) were the most efficient; their IC/sub 50/ against L5178Y murine lymphoma cell was 6.5 h/ml, MIC against S. aureus (+) and E. coli (-) was 6.25 g/ml. MIC of 5-bromo-2', 3'-O-isopropylideneuridine(6) against Trichophyton rubrum was 0.2 g/ml. And 5'-monophosphate derivatives are more active than simple uridine derivatives, suggesting other modified nucleoside 5'-phosphate may be worthwhile examing further as a new prodrugs.

  • PDF

Characterization of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Saccharomyces cerevisiae

  • KIM, JAE-HO;LEE, DAE-HYOUNG;JEONG, SEOUNG-CHAN;CHUNG, KUN-SUB;LEE, JONG-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1318-1323
    • /
    • 2004
  • This study describes the purification and characterization of a novel antihypertensive angiotensin 1­converting enzyme (ACE) inhibitory peptide from Saccharomyces cerevisiae. Maximal production of the ACE inhibitor from Saccharomyces cerevisiae was obtained from 24 h of cultivation at $30^{\circ}C$ and its ACE inhibitory activity was increased by about 1.5 times after treatment of the cell-free extract with pepsin. After the purification of ACE inhibitory peptides with ultrafiltration, Sephadex G-25 column chromatography, and reverse-phase HPLC, an active fraction with an $IC_{50}$ of 0.07 mg and $3.5\%$ yield was obtained. The purified peptide was a novel decapeptide, showing very low similarity to other ACE inhibitory peptide sequences, and its amino acid sequence was Tyr-Asp-Gly-Gly-Val-Phe-Arg-Val-Tyr-Thr. The purified inhibitor competitively inhibited ACE and also showed a clear antihypertensive effect in spontaneously hypertensive rats (SHR) at a dosage of 1 mg/kg body weight.

Identification of Novel Bioactive Hexapeptides Against Phytopathogenic Bacteria Through Rapid Screening of a Synthetic Combinatorial Library

  • Choi, Jae-Hyuk;Moon, Eun-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.792-802
    • /
    • 2009
  • Antimicrobial peptides (AMPs) are considered to be a promising alternative to conventional antibiotics for future generations. We identified four novel hexapeptides with antimicrobial activity: KCM11 (TWWRWW-$NH_2$), KCM12 (KWRWlW-$NH_2$), KCM21 (KWWWRW-$NH_2$), and KRS22 (WRWFIH-$NH_2$), through positional scanning of a synthetic peptide combinatorial library (PS-SCL). The ability of these peptides to inhibit the growth of a variety of bacteria and unicellular fungi was evaluated. KCM11 and KRS22 preferentially inhibited the normal growth of fungal strains, whereas KCM12 and KCM21 were more active against bacterial strains. Bactericidal activity was addressed in a clear zone assay against phytopathogenic bacteria, including Pectobacterium spp., Xanthomonas spp., Pseudomonas spp., etc. KCM21 showed the highest activity and was effective against a wide range of target organisms. Application of KCM21 with inoculation of Pectobacterium carotovorum subsp. carotovorum on detached cabbage leaves resulted in an immune phenotype or a significant reduction in symptom development, depending on the peptide concentration. Cytotoxicity of the four hexapeptides was evaluated in mouse and human epithelial cell lines using an MTT test. The results revealed a lack of cytotoxic effects.

Biological Inspiration toward Artificial Photostystem

  • Park, Jimin;Lee, Jung-Ho;Park, Yong-Sun;Jin, Kyoungsuk;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.91-91
    • /
    • 2013
  • Imagine a world where we could biomanufacture hybrid nanomaterials having atomic-scale resolution over functionality and architecture. Toward this vision, a fundamental challenge in materials science is how to design and synthesize protein-like material that can be fully self-assembled and exhibit information-specific process. In an ongoing effort to extend the fundamental understanding of protein structure to non-natural systems, we have designed a class of short peptides to fold like proteins and assemble into defined nanostructures. In this talk, I will talk about new strategies to drive the self-assembled structures designing sequence of peptide. I will also discuss about the specific interaction between proteins and inorganics that can be used for the development of new hybrid solar energy devices. Splitting water into hydrogen and oxygen is one of the promising pathways for solar to energy convertsion and storage system. The oxygen evolution reaction (OER) has been regarded as a major bottleneck in the overall water splitting process due to the slow transfer rate of four electrons and the high activation energy barrier for O-O bond formation. In nature, there is a water oxidation complex (WOC) in photosystem II (PSII) comprised of the earthabundant elements Mn and Ca. The WOC in photosystem II, in the form of a cubical CaMn4O5 cluster, efficiently catalyzes water oxidation under neutral conditions with extremely low overpotential (~160 mV) and a high TOF number. The cluster is stabilized by a surrounding redox-active peptide ligand, and undergo successive changes in oxidation state by PCET (proton-coupled electron transfer) reaction with the peptide ligand. It is fundamental challenge to achieve a level of structural complexity and functionality that rivals that seen in the cubane Mn4CaO5 cluster and surrounding peptide in nature. In this presentation, I will present a new strategy to mimic the natural photosystem. The approach is based on the atomically defined assembly based on the short redox-active peptide sequences. Additionally, I will show a newly identified manganese based compound that is very close to manganese clusters in photosystem II.

  • PDF

Isolation and Characterization of the C-type Lysozyme Gene from the Common Cutworm Spodoptera litura

  • Kim, Jong-Wan;Yoe, Sung-Moon
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.345-350
    • /
    • 2009
  • We have isolated and characterized a new insect chicken type (c-type) lysozyme gene from the common cutworm, Spodoptera litura. The full-length cDNA of Spodoptera lysozyme is cloned by rapid amplification of cDNA ends PCR (RACE-PCR). The isolated cDNA consists of 1039 bp including the coding region for a 142-amino acid residue polypeptide, which included a signal peptide of 21-amino acid residue and a mature protein of 121-amino acid residue. The predicted molecular weight of mature lysozyme and its theoretical isoelectric point from amino acid composition is 13964.8 Da and 9.05, respectively. The deduced amino acid sequence of Spodoptera lysozyme gene shows the highest similarity (96.7%) to Spodoptera exigua lysozyme among other lepidopteran species. Amino acid sequence comparison with other the c-type lysozymes, Spodoptera lysozyme has the completely conserved $Glu^{32}$ and $Asp^{50}$ of the active site and eight Cys residues are completely conserved in the same position as that of other lepidopteran lysozymes.

Studies on the New Antimetabolites Produced by Microorganisms (미생물이 생산하는 새로운 대사길항물질에 관한 연구)

  • 박부길
    • Microbiology and Biotechnology Letters
    • /
    • v.6 no.4
    • /
    • pp.187-196
    • /
    • 1978
  • Antimetabolite N-2292 substance, an antagonist of L-aspartic acid and L-glutamic acid was isolated from the fermentation broth of Streptomyces. Taxonomical study on the producing strain made it a related species of Streptomyces albulus judged by cultural characteristics and carbon utilization. N-2292 substance was isolated as amorphous white powder with melting point at 185$^{\circ}C$. From the physicochemical characteristics of the substance, it was peptide like substance. It was active against Gram positive and Gram negative bacteria but negative against yeast and mold in its biological properties. It was reversed by L-Asp and L-Glu on the synthetic medium.

  • PDF

Functional Characteristics of Whey Protein-Derived Peptides Produced Using Lactic Acid Bacteria Hydrolysis

  • Jae-Yong Lee;Dong-Gyu Yoo;Yu-Bin Jeon;Se-Hui Moon;Ok-Hee Kim;Dong-Hyun Lee;Cheol-Hyun Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.34-43
    • /
    • 2023
  • Hydrolysis of whey-derived proteins using lactic acid bacteria (LAB) utilizes the mass culture method and fermentation of LAB to produce effective bioactive peptides. Whey protein has the biological potential of its precursors, but the active fragments may not be released depending on the hydrolysis method. As an alternative to these problems, the nutritional and bioactive functionality of the hydrolysis method have been reported to be improved using LAB for whey protein. Peptide fractions were obtained using a sample fast protein liquid chromatography device. Antioxidant activity was verified for each of the five fractions obtained. In vitro cell experiments showed no cytotoxicity and inhibited nitric oxide production. Cytokine (IL [interleukin]-1α, IL-6, tumor necrosis factor-α) production was significantly lower than that of lipopolysaccharides (+). As a result of checking the amino acid content ratio of the fractions selected through the AccQ-Tag system, 17 types of amino acids were identified, and the content of isoleucine, an essential amino acid, was the highest. These properties show their applicability for the production of functional products utilizing dietary supplements and milk. It can be presented as an efficient method in terms of product functionality in the production of uniform-quality whey-derived peptides.

Ameliorating Effect of Gardenia jasminoides Extract on Amyloid Beta Peptide-induced Neuronal Cell Deficit

  • Choi, Soo Jung;Kim, Mi-Jeong;Heo, Ho Jin;Hong, Bumshik;Cho, Hong Yon;Kim, Young Jun;Kim, Hye Kyung;Lim, Seung-Taik;Jun, Woo Jin;Kim, Eun-Ki;Shin, Dong-Hoon
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.113-118
    • /
    • 2007
  • The brains of Alzheimer's disease (AD) patients are characterized by large deposits of amyloid beta peptide ($A{\beta}$). $A{\beta}$ is known to increase free radical production in nerve cells, leading to cell death that is characterized by lipid peroxidation, free radical formation, protein oxidation, and DNA/RNA oxidation. In this study, we selected an extract of Gardenia jasminoides by screening, and investigated its ameliorating effects on $A{\beta}$-induced oxidative stress using PC12 cells. The effects of the extract were evaluated using the 2',7'-dichlorofluorescein diacetate (DCF-DA) assay and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. To find the active component, the ethanol extract was partitioned with hexane, chloroform, and ethyl acetate, respectively, and the active component was purified by silica-gel column chromatography and HPLC. The results suggested that Gardenia jasminoides extract can reduce the cytotoxicity of $A{\beta}$ in PC 12 cells, possibly by reducing oxidative stress.

Neuroprotective effects of Paeonia lactiflora and its active compound paeoniflorin against Aβ25-35-induced neurotoxicity in SH-SY5Y cells

  • Nam, Mi Na;Kim, Ji-Hyun;Lee, Ah Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.105-112
    • /
    • 2021
  • Excessive accumulation of the amyloid beta (Aβ) peptide has been implicated in the pathogenesis of Alzheimer's disease (AD). Paeonia lactiflora (PL) has been used in treatments of several conditions such as inflammation, arthritis, and cognitive impairment. The purpose of this study was to investigate the neuroprotective effect and mechanisms of PL and its active compound, paeoniflorin (PF), on Aβ25-35-induced neurotoxicity in SH-SY5Y cells. We evaluated cell viability, lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) production. Furthermore, underlying mechanism of PL and PF on the regulation of amyloidogenic pathway was analyzed by Western blotting. In our results, Aβ25-35-induced neuronal cell loss was observed, whereas treatment with PL (10, 50, and 100 ㎍/mL) and PF (1, 5, and 10 ㎍/mL) significantly elevated the cell viability, and decreased LDH release and ROS production. In addition, exposure of SH-SY5Y cells to Aβ25-35 significantly increased the protein levels of amyloid precursor protein (APP)-C-terminal fragment β, β-site APP-cleaving enzyme, and presenilin-1 and -2. However, treatment with PL and PF inhibited the amyloidogenic pathway via the down-regulation of those protein expressions. Taken together, our results indicate that PL, and its active compound PF, could protect SH-SY5Y cells against Aβ25-35-induced cell neurotoxicity by attenuating LDH release and ROS production, and these effects may be attributed to regulation of amyloidogenic pathway-related protein expression. In conclusion, PL and PF could be a potential to prevent neurodegenerative disorders such as AD.