• 제목/요약/키워드: bioinformatic

검색결과 176건 처리시간 0.022초

Leucine rich repeat LGI family member 3: Integrative analyses reveal its prognostic association with non-small cell lung cancer

  • Dong-Seok Kim;Nyoun Soo Kwon;Hye-Young Yun
    • Oncology Letters
    • /
    • 제18권3호
    • /
    • pp.3388-3398
    • /
    • 2019
  • Leucine rich repeat LGI family member 3 (LGI3) is a member of the LGI protein family. Our previous studies reported that LGI3 was expressed in adipose tissues, brain and skin, where it served roles as a multifunctional cytokine and pro-inflammatory adipokine. It was hypothesized that LGI3 may be involved in cytokine networks in cancer. The present study aimed to analyze differentially expressed genes in non-small cell lung cancer (NSCLC) tissues and NSCLC cohort data, to evaluate the prognostic role of LGI3. Expression microarray and NSCLC cohort data were statistically analyzed by bioinformatic methods, and protein-protein interactions, functional enrichment and pathway, gene coexpression network (GCN) and prognostic association analyses were performed. The results demonstrated that the expression levels of LGI3 and its receptor a disintegrin and metalloproteinase domain-containing protein 22 were significantly decreased in NSCLC tissues. A total of two upregulated genes and 11 downregulated genes in NSCLC tissues were identified as LGI3-regulated genes. Protein-protein interaction network analysis demonstrated that all LGI3-regulated genes that were altered in NSCLC were involved in a protein-protein interaction network cluster. Functional enrichment, Kyoto Encyclopedia of Genes and Genomes pathway and GCN analyses demonstrated the association of these genes with the immune and inflammatory responses, angiogenesis, the tumor necrosis factor pathway, and chemokine and peroxisome proliferator-activated receptor signaling pathways. Analysis of NSCLC cohorts revealed that low expression levels of LGI3 was significantly associated with poor prognosis of NSCLC. Analysis of the somatic mutations of the LGI3 gene in NSCLC revealed that the amino acid residues altered in NSCLC included two single nucleotide polymorphism sites and three phylogenetically coevolved amino acid residues. Taken together, these results suggest that LGI3 may be a potential prognostic marker of NSCLC.

Cytoplasmatic Localization of Six1 in Male Testis and Spermatogonial Stem Cells

  • Mingming Qin;Linzi Ma;Wenjing Du;Dingyao Chen;Guoqun Luo;Zhaoting Liu
    • International Journal of Stem Cells
    • /
    • 제17권3호
    • /
    • pp.298-308
    • /
    • 2024
  • Sine oculis homeobox 1 (Six1) is an important factor for embryonic development and carcinoma malignancy. However, the localization of Six1 varies due to protein size and cell types in different organs. In this study, we focus on the expression and localization of Six1 in male reproductive organ via bioinformatics analysis and immunofluorescent detection. The potential interacted proteins with Six1 were also predicted by protein-protein interactions (PPIs) and Enrichr analysis. Bioinformatic data from The Cancer Genome Atlas and Genotype-Tissue Expression project databases showed that SIX1 was highly expressed in normal human testis, but low expressed in the testicular germ cell tumor sample. Human Protein Atlas examination verified that SIX1 level was higher in normal than that in cancer samples. The sub-localization of SIX1 in different reproductive tissues varies but specifically in the cytoplasm and membrane in testicular cells. In mouse cells, single cell RNA-sequencing data analysis indicated that Six1 expression level was higher in mouse spermatogonial stem cells (mSSCs) and differentiating spermatogonial than in other somatic cells. Immunofluorescence staining showed the cytoplasmic localization of Six1 in mouse testis and mSSCs. Further PPIs and Enrichr examination showed the potential interaction of Six1 with bone morphogenetic protein 4 (Bmp4) and catenin Beta-1 (CtnnB1) and stem cell signal pathways. Cytoplasmic localization of Six1 in male testis and mSSCs was probably associated with stem cell related proteins Bmp4 and CtnnB1 for stem cell development.

특수 목적견으로서의 품성 및 능력 관련 유전자들에 관한 생물정보학적 분석 (Bioinformatic Analysis of the Canine Genes Related to Phenotypes for the Working Dogs)

  • 권윤정;어정우;최봉환;최유리;김정안;김다희;김태헌;성환후;김희수
    • 생명과학회지
    • /
    • 제23권11호
    • /
    • pp.1325-1335
    • /
    • 2013
  • 특수 목적견(구조견, 군견, 안내견 및 탐지견)은 집중력, 소유욕, 대담성 등을 기반으로 한 훈련시험을 통해 선별된다. 최근 특수견으로서의 특수한 능력 및 품성에 대해 유전적인 정보가 중요한 인자로 다뤄지고 있다. 본 연구에서는 특수견으로서의 개의 특수한 능력 및 품성과 관련된 유전자들의 분자적인 특징을 고찰하고자 하였다. 이전 연구에서 보고된 24개의 유전자(AR, BDNF, DAT, DBH, DGCR2, DRD4, MAOA, MAOB, SLC6A4, TH, TPH2, IFT88, KCNA3, TBR2, TRKB, ACE, GNB1, MSTN, PLCL1, SLC25A22, WFIKKN2, APOE, GRIN2B, PIK3CG)를 선택하여 품성, 후각, 운동 및 학습능력 관련 유전자, 네 가지 카테고리로 분류하였다. 본 연구에서는 생물학적인 기법을 이용하여 이 유전자들의 염색체상의 위치, 유전자들 간의 네트워크를 통한 상호관계를 조사하였으며, 어떤 생물학적 기능과 관련이 있는지 Gene Ontology 분석과 데이터베이스를 기반으로 in silico 발현 양상을 살펴보았다. 또한 이전 연구를 통하여 품성 관련 유전자들의 다양한 유전적 다형성에 대한 보고를 조사하였다. 본 연구는 특수 견으로서 주요하게 고려되는 개의 고유한 능력 및 품성 관련된 유전자에 대해 분자적 특징을 제시하고 있다. 이 후보 유전자들은 개의 특수한 표현형과의 관계를 밝힐 수 있는 연구의 기초자료로서 이용될 수 있을 뿐만 아니라 핵심적인 유전인자로 응용되어 신속하고 정확한 특수견 선발에 기여할 수 있을 것으로 전망된다.

Molecular Cloning and Characterization of the Yew Gene Encoding Squalene Synthase from Taxus cuspidata

  • Huang, Zhuoshi;Jiang, Keji;Pi, Yan;Hou, Rong;Liao, Zhihua;Cao, Ying;Han, Xu;Wang, Qian;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.625-635
    • /
    • 2007
  • The enzyme squalene synthase (EC 2.5.1.21) catalyzes a reductive dimerization of two farnesyl diphosphate (FPP) molecules into squalene, a key precursor for the sterol and triterpene biosynthesis. A full-length cDNA encoding squalene synthase (designated as TcSqS) was isolated from Taxus cuspidata, a kind of important medicinal plants producing potent anti-cancer drug, taxol. The full-length cDNA of TcSqS was 1765 bp and contained a 1230 bp open reading frame (ORF) encoding a polypeptide of 409 amino acids. Bioinformatic analysis revealed that the deduced TcSqS protein had high similarity with other plant squalene synthases and a predicted crystal structure similar to other class I isoprenoid biosynthetic enzymes. Southern blot analysis revealed that there was one copy of TcSqS gene in the genome of T. cuspidata. Semi-quantitative RT-PCR analysis and northern blotting analysis showed that TcSqS expressed constitutively in all tested tissues, with the highest expression in roots. The promoter region of TcSqS was also isolated by genomic walking and analysis showed that several cis-acting elements were present in the promoter region. The results of treatment experiments by different signaling components including methyl-jasmonate, salicylic acid and gibberellin revealed that the TcSqS expression level of treated cells had a prominent diversity to that of control, which was consistent with the prediction results of TcSqS promoter region in the PlantCARE database.

배아줄기세포에서 트랜스 스플라이싱 전사체의 분석 (Analysis of Trans-splicing Transcripts in Embryonic Stem Cell)

  • 하홍석;허재원;김대수;박상제;배진한;안궁;윤세은;김희수
    • 생명과학회지
    • /
    • 제19권4호
    • /
    • pp.549-552
    • /
    • 2009
  • 유전자의 융합으로 인한 돌연변이는 염색체 재배열, 트랜스 스플라이싱, 유전자간 스플라이싱으로 인하여 야기된다고 알려져 있다. 우리는 두 개의 서로 다른 유전자의 pre-mRNA의 융합으로 인하여 만들어지는 트랜스 스플라이싱의 전사 산물에 관심을 가져, 인간의 태아 줄기 세포에서 이러한 돌연변이 양상을 분석하였다. 배아줄기세포의 mRNA에서 트랜스 스플라이싱 전사체 70개를 탐지해 내고, 이들의 융합되는 패턴에 따라 5'UTR-5'UTR, 5'UTR-3'UTR, 3'UTR-3'UTR, 5'UTR- CDS, 3'UTR-CDS, CDS-CDS의 6개의 유형으로 분류하여 분석하였다. 두 유전자의 융합되는 영역은 UTR영역보다 CDS에서 풍부하였는데, 이러한 이유는 많은 인트론 수로 인해 야기되는 것으로 추정된다. 융합되는 유전자의 염색체상의 위치분석 결과, 17번과 19번 염색체가 융합유전자의 활성화를 나타내었다. 이러한 연구결과는 향후 융합유전자와 인간의 질병 연구에 크게 기여할 것으로 사료된다.

Recognition of Transmembrane Protein 39A as a Tumor-Specific Marker in Brain Tumor

  • Park, Jisoo;Lee, Hyunji;Tran, Quangdon;Mun, Kisun;Kim, Dohoon;Hong, Youngeun;Kwon, So Hee;Brazil, Derek;Park, Jongsun;Kim, Seon-Hwan
    • Toxicological Research
    • /
    • 제33권1호
    • /
    • pp.63-69
    • /
    • 2017
  • Transmembrane protein 39A (TMEM39A) belongs to the TMEM39 family. TMEM39A gene is a susceptibility locus for multiple sclerosis. In addition, TMEM39A seems to be implicated in systemic lupus erythematosus. However, any possible involvement of TMEM39A in cancer remains largely unknown. In the present report, we provide evidence that TMEM39A may play a role in brain tumors. Western blotting using an anti-TMEM39A antibody indicated that TMEM39A was overexpressed in glioblastoma cell lines, including U87-MG and U251-MG. Deep-sequencing transcriptomic profiling of U87-MG and U251-MG cells revealed that TMEM39A transcripts were upregulated in such cells compared with those of the cerebral cortex. Confocal microscopic analysis of U251-MG cells stained with anti-TMEM39A antibody showed that TMEM39A was located in dot-like structures lying close to the nucleus. TMEM39A probably located to mitochondria or to endosomes. Immunohistochemical analysis of glioma tissue specimens indicated that TMEM39A was markedly upregulated in such samples. Bioinformatic analysis of the Rembrandt knowledge base also supported upregulation of TMEM39A mRNA levels in glioma patients. Together, the results afford strong evidence that TMEM39A is upregulated in glioma cell lines and glioma tissue specimens. Therefore, TMEM39A may serve as a novel diagnostic marker of, and a therapeutic target for, gliomas and other cancers.

두족류의 진위 판별을 위한 Real-time Quantitative PCR 검사법 개발 및 검증 (Development and Validation of Quick and Accurate Cephalopods Grouping System in Fishery Products by Real-time Quantitative PCR Based on Mitochondrial DNA)

  • 정인영;서용배;양지영;권기성;김군도
    • 한국식품위생안전성학회지
    • /
    • 제33권4호
    • /
    • pp.280-288
    • /
    • 2018
  • 본 연구는 국내에서 생산되거나 해외에서 수입되어 국내에서 유통되는 수산물 중에서 두족류를 문어류, 낙지류, 오징어류, 주꾸미류, 꼴뚜기류의 5개 그룹으로 구분하여 분석하였다. 두족류 5개 그룹을 판별을 하기 위해 미토콘드리아에 존재하는 유전자를 분석하였고, 그 중에서 COI (mitochondrial cytochrome C oxidase subunit I), 16s rRNA (16s ribosomal RNA), 12s rRNA (12s ribosomal RNA) 내에서 상당히 유사한 DNA 서열 부분과 일부 서열 변화 부분이 확인되었다. 명확하게 두족류 5개 그룹 판별을 하기 위해 COI, 16s rRNA, 12s rRNA 유전자의 일부 서열 변화 부분에서 그룹 특이적 프라이머 세트를 디자인하였다. 국내 외에서 확보한 두족류 시료(참문어, 낙지, 살오징어, 아메리카 대왕오징어, 갑오징어, 주꾸미, 모래주꾸미, 하이야주꾸미, 참꼴뚜기, 창꼴뚜기, 한치꼴뚜기)의 genomic DNA을 추출하여 각 그룹의 특이적 프라이머를 이용하여 SYBR 기반의 real-time PCR 시스템에 의해 분석되었고, threshold cycle (Ct) value와 같은 real-time PCR 결과 분석에 의해 두족류 내 그룹 판별이 가능하였다(Table 3).

Molecular Cloning and Characterization of a Novel Stem-specific Gene from Camptotheca acuminata

  • Pi, Yan;Liao, Zhihua;Chai, Yourong;Zeng, Hainian;Wang, Peng;Gong, Yifu;Pang, Yongzhen;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • 제39권1호
    • /
    • pp.68-75
    • /
    • 2006
  • In higher plants, P450s participate in the biosynthesis of many important secondary metabolites. Here we reported for the first time the isolation of a new cytochrome P450 cDNA that expressed in a stem-specific manner from Camptotheca acuminata (designated as CaSS), a native medicinal plant species in China, using RACE-PCR. The full-length cDNA of CaSS was 1735 bp long containing a 1530 bp open reading frame (ORF) encoding a polypeptide of 509 amino acids. Bioinformatic analysis revealed that CASS contained a heme-binding domain PFGXGRRXCX and showed homology to other plant cytochrome P450 monooxygenases and hydroxylases. Southern blotting analysis revealed that there was only one copy of the CaSS present in the genome of Camptotheca acuminata. Northern blotting analysis revealed that CaSS expressed, in a tissue-specific manner, highly in stem and lowly in root, leaf and flower. Our study suggests that CaSS is likely to be involved in the phenylpropanoid pathway.

Phytic acid does not affect the formation of colonic aberrant crypt foci in Fe-overloaded male F344 rats

  • Lee, Yea Eun;Hue, Jin-Joo;Lee, Ki-Nam;Nam, Sang Yoon;Ahn, Byeongwoo;Yun, Young Won;Jeong, Jae-Hwang;Lee, Beom Jun
    • 대한수의학회지
    • /
    • 제48권3호
    • /
    • pp.337-345
    • /
    • 2008
  • There are accumulating evidences that high levels of dietary iron may play a role in colon carcinogenesis. Elevated iron status has been associated with oxidative stress. Phytic acid (PA) functions as an antioxidant by chelating divalent cations and prevents formation of reactive oxygen species responsible for cell injury and carcinogenesis. The protective effect of PA was investigated on formation of aberrant crypt foci (ACF) induced by azoxymethane (AOM) in iron-overloaded male F344 rats. After acclimation with AIN-93G purified diet (35 ppm Fe, normal control diet) for one week, animals were fed iron-overloaded diet (350 ppm Fe) and PA (0.5% or 2% PA in water) for 8 weeks. Animals received two (1st and 2nd week) injections of AOM (15 mg/kg b.w.) to induce colonic ACF. The colonic mucosa was examined for the total numbers of aberrant crypt (AC) and ACF after staining with methylene blue. The blood and serum were analyzed with a blood cell differential counter and an automatic serum analyzer. Iron-overloaded diet increased the concentration of iron in liver of the rats. But iron-related parameters in blood were not changed among experimental groups. The numbers of ACF per colon and AC per colon were $178.8{\pm}33.2$ and $448.4{\pm}110.2$ in the iron-overloaded F344 rats. The total AC was significantly increased, compared with normal-diet AOM control group (p < 0.05). The treatments of PA at the dose of 0.5% slightly decreased the number of ACF and AC per colon to $153.6{\pm}29.5$ and $396.3{\pm}107.5$. However, there were no significant differences in the total numbers of ACF and AC between the AOM control group and PA (0.5% or 2%)-treated groups. These results suggest that PA may not affect the formation of ACF or AC induced by AOM in ironoverloaded F344 rats.

C57BL/6J db/db생쥐에서 여주 (Momordica Charantia)의 항당뇨 효과 (Effect of bitter melon (Momordica Charantia) on anti-diabetic activity in C57BLI/6J db/db mice)

  • 정재황;이상화;허진주;이기남;남상윤;윤영원;정성훈;이영호;이범준
    • 대한수의학회지
    • /
    • 제48권3호
    • /
    • pp.327-336
    • /
    • 2008
  • Many herbal extracts have been reported to have a preventive or therapeutic effect of on diabetes mellitus. Momordica Charantia commonly known as bitter melon or karela has been reported to be a medicinal plant for treating various diseases including cancers and diabetes. The objectives of this study were to investigate anti-diabetic effects of bitter melon (BM) as determined by blood glucose levels, glucose tolerance test (GTT), insulin tolerance test (ITT), insulin and HbA1C activities in serum, serum biochemical and lipid levels, histopathology, immunohistochemistry and AMPK-${\alpha}2$ expression of skeletal muscle in male C57BL/6J db/db mice. There were four experimental groups including vehicle control, BM 10 mg/kg, BM 50 mg/kg, and BM 250 mg/kg. BM at doses of 10, 50, and 250 mg/kg was orally administered to the diabetic mice everyday for 8 weeks. The treatments of BM 10, 50, and 250 mg/kg significantly decreased the blood glucose level in the diabetic mice compared with vehicle control (p < 0.05). The treatments of BM 10 and 50 mg/kg significantly decreased the GTT, ITT and HbA1c levels in the diabetic mice compared with vehicle control (p < 0.05). All BM groups significantly decreased GOT, GPT, BUN, LDL and glucose levels in the diabetic mice compared with the vehicle control mice (p < 0.05). The livers of mice treated with the BM 10, 50, and 250 mg/kg showed a remarkable decrease in the number of lipid droplets compared with the vehicle control. The pancreas of mice treated with the BM 10, 50, and 250 mg/kg showed a remarkable increase in insulin concentration of ${\beta}$-cells compared with the vehicle control. In addition, the treatments of BM 10, 50, and 250 mg/kg actually increased the expression of AMPK-${\alpha}2$ compared with vehicle control. These results suggest that BM has a respectable anti-diabetic effect resulting from inhibition of blood glucose level and lipid level in serum and that consumption of BM may give a benefit for controlling diabetes mellitus in humans.