• Title/Summary/Keyword: biogeochemical modeling

Search Result 20, Processing Time 0.037 seconds

Investigation of Change in Air-Sea CO2 Exchange over the East China Sea using Biogeochemical Ocean Modeling (생지화학모델링을 이용한 동중국해 해양-대기 CO2교환량의 변화 연구)

  • Park, Young-Gyu;Choi, Sang-Hwa;Yeh, Sang-Wook;Lee, Jung-Suk;Hwang, Jin-Hwan;Kang, Seong-Gil
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.325-334
    • /
    • 2008
  • A biogeochemical model was used to estimate air-sea $CO_2$ exchange over the East China Sea. Since fresh water discharge from the Changjiang River and relevant chemistry were not considered in the employed model, we were not able to produce accurate results around the Changjiang River mouth. This factor aside, the model showed that the East China Sea, away from the Changjiang River mouth, takes approximately $1.5{\sim}2\;mole\;m^{-2}yr^{-1}$ of $CO_2$ from the atmosphere. The model also showed that biological factors modify the air-sea $CO_2$ flux by only a few percent when we assumed that biological activity increased two-fold. Therefore, we can argue that the biological effect is not strong enough over this area within the framework of the current phosphate-based biological model. Compared to the preindustrial era, in 1995 the East China Sea absorbed $0.4{\sim}0.8\;mole\;m^{-2}yr^{-1}$ more $CO_2$. If warming of the sea surface is considered, in addition to the increase in atmospheric $CO_2$ concentration, by 2045 the East China Sea would absorb $0.2{\sim}0.4\;mole\;m^{-2}yr^{-1}$ less $CO_2$ compared to the non-warming case.

Impact of Iron Scavenging and Desorption Parameters on Chlorophyll Simulation in the Tropical Pacific within NEMO-TOPAZ

  • Lee, Hyomee;Moon, Byung-Kwon;Park, Jong-Yeon;Kim, Han-Kyoung;Jung, Hyun-Chae;Wie, Jieun;Park, Hyo Jin;Byun, Young-Hwa;Lim, Yoon-Jin;Lee, Johan
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.390-400
    • /
    • 2021
  • Ocean biogeochemistry plays a crucial role in sustaining the marine ecosystem and global carbon cycle. To investigate the oceanic biogeochemical responses to iron parameters in the tropical Pacific, we conducted sensitivity experiments using the Nucleus for European Modelling of the Ocean-Tracers of Ocean Phytoplankton with Allometric Zooplankton (NEMO-TOPAZ) model. Compared to observations, the NEMO-TOPAZ model overestimated the concentrations of chlorophyll and dissolved iron (DFe). The sensitivity tests showed that with increasing (+50%) iron scavenging rates, chlorophyll concentrations in the tropical Pacific were reduced by approximately 16%. The bias in DFe also decreased by approximately 7%; however, the sea surface temperature was not affected. As such, these results can facilitate the development of the model tuning strategy to improve ocean biogeochemical performance using the NEMO-TOPAZ model.

A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir (새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석)

  • Jeon, Ji Hye;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.

Simulating Bioremediation of Uranium-Contaminated Aquifers

  • ;Peter R. Jaffe
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.161-166
    • /
    • 2002
  • Bioremediation of trace metals in groundwater may require the manipulation of redox conditions via the injection of a carbon source. To simulate the numerous biogeochemical processes that will occur during the bioremediation of trace-metal-contaminated aquifers, a reactive transport model has been developed. The model consists of a set of coupled mass balance equations, accounting for advection, hydrodynamic dispersion, and a kinetic formulation of the biological or chemical transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and trace metal contaminants of interest, uranium in this study. The redox conditions of the domain are characterized by estimating the pE, based on the concentrations of the dominant terminal electron acceptor and its corresponding reduced specie. This pE and the concentrations of relevant species we then used by a modified version of MINTEQA2, which calculates the speciation/sorption and precipitation/dissolution of the species of interest under equilibrium conditions. Kinetics of precipitation/dissolution processes are described as being proportional to the difference between the actual and calculated equilibrium concentration.

  • PDF

Assessment of Changes in Temperature and Primary Production over the East China Sea and South Sea during the 21st Century using an Earth System Model (지구시스템 모형을 이용한 21세기 동중국해와 남해의 수온과 일차생산 변화 평가)

  • Park, Young-Gyu;Choi, Sang-Hwa;Kim, Seon-Dong;Kim, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.229-237
    • /
    • 2012
  • Using results from an Earth System model, we investigated change in primary production in the East China Sea, under a global warming scenario. As global warming progresses, the vertical stratification of water becomes stronger, and nutrient supply from the lower part to the upper part is reduced. Consequently, so is the primary production. In addition to the warming trend, there is strong decadal to interdecadal scale variability, and it takes a few decades before the warming trend surpasses natural variability. Thus, it would be very hard to investigate the global warming trend using data of several years' length.

Alternatives for Quantifying Wetland Carbon Emissions in the Community Land Model (CLM) for the Binbong Wetland, Korea.

  • Eva Rivas Pozo;Yeonjoo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.413-413
    • /
    • 2023
  • Wetlands are a critical component of the global carbon cycle and are essential in mitigating climate change. Accurately quantifying wetland carbon emissions is crucial for understanding and predicting the impact of wetlands on the global carbon budget. The uncertainty quantifying carbon in wetlands may comes from the ecosystem's hydrological, biochemical, and microbiological variability. The Community Land Model is a sophisticated and flexible land surface model that offers several configuration options such as energy and water fluxes, vegetation dynamics, and biogeochemical cycling, necessitating careful consideration for the alternative configurations before model implementation to develop a practical model framework. We conducted a systematic literature review, analyzing the alternatives, focusing on the carbon stock pools configurations and the parameters with significant sensitivity for carbon quantification in wetlands. In addition, we evaluated the feasibility and availability of in situ observation data necessary for validating the different alternatives. This analysis identified the most suitable option for our study site, the Binbong Wetland, in Korea.

  • PDF

Modeling the Fate and Transport of Arsenic in Wetland Sediments (습지 퇴적물에서 비소의 성상과 이동 모의에 관한 수학적 모형)

  • Park, Seok-Soon;Wang, Soo-Kyun
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.434-446
    • /
    • 2003
  • The fate and transport of many trace metals, metalloids, and radionuclides in porous media is closely linked to the biogeochemical reactions that occur as a result of organic carbon being sequentially degraded by different microorganisms using a series of terminal electron acceptors. The spatial distribution of these biogeochemical reactions is affected by processes that are often unique and/or characteristic to a specific environment. Generic model formulations have been developed and applied to simulate the fate and transport of arsenic in two hydrologic settings, permanently flooded freshwater sediments, namely non-vegetated wetland sediments and vegetated wetland sediments. The key physical processes that have been considered are sedimentation, effects of roots on biogeochemistry, advective transport, and differences in mixing processes. Steady-state formulations were applied to the sedimentary environments. Results of numerical simulations show that these physical processes significantly affect the chemical profiles of different electron acceptors, their reduced species, and arsenate as well as arsenite that will result from the degradation of an organic carbon source in the sediments. Even though specific biological transformations are allowed to proceed only in zones where they are thermodynamically favorable, the results show that mixing as well as abiotic reactions can make the profiles of individual electron acceptors overlap and/or appear to reverse their expected order.

Functional Assessment of Gangcheon Replacement Wetland Using Modified HGM (수정 수문지형학적 방법을 적용한 강천 대체습지의 기능평가)

  • Kim, Jungwook;Lee, Bo Eun;Kim, Jae Geun;Oh, Seunghyun;Jung, Jaewon;Lee, Myungjin;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.318-326
    • /
    • 2017
  • Riverine wetlands were reduced and damaged by dredging of rivers and constructing parks in wetlands by Four Rivers Project from 2008 to 2013. Therefore, replacement wetlands were constructed for the compensation of wetland loss by the government. However, It is not enough to manage replacement wetlands. In order to manage the wetlands efficiently, it is necessaty to assess the functions of the wetlands and to manage them according to their functions. Here we performed functional assessments for a replacement wetland called Gangcheon wetland using the modified HGM approach. Hydrological, biogeochemical, animal habitat, and plant habitat functions for the wetland were assessed. To assess the functions, we collected informations for modified HGM approach from the monitored hydrologic data, field survey, published reports and documents for before and after the project, and hydraulic & hydrologic modeling. As the results of the assessment, the hydrological function for the replacement wetland showed 65.5% of the reference wetland, biogeochemical function showed 66.6%, plant habitat function showed 75%, and animal habitat function showed 108.3%. Overall, Gangcheon wetland function after the project was reduced to 78.9% of the function before the project. The decrease in hydrological function is due to the decrease of subsurface storage of water. And the decrease in biogeochemical & pland habitat functions is due to the removal of sandbank around the Gangcheon wetland. To compensate for the reduced function, it is necessary to expand the wetland area and to plant the various vegetation. The modified HGM used in this study can take into account the degree of improvement for replacement wetlands, so it can be used to efficiently manage the replacement wetlands. Also when the wetland is newly constructed, it will be very useful to assess the change of function of the wetland over time.

Three-dimensional Numerical Modeling of Water Temperature and Internal Waves in a Large Stratified Lake (대형 성층 호수의 수온과 내부파의 3차원 수치 모델링)

  • Chung, Se-Woong;Schladow, S. Geoffrey
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.367-376
    • /
    • 2015
  • The momentum and kinetic turbulent energy carried by the wind to a stratified lake lead to basin-scale motions, which provide a major driving force for vertical and horizontal mixing. A three-dimensional (3D) hydrodynamic model was applied to Lake Tahoe, located between California and Nevada, USA, to simulate the dominant basin-scale internal waves in the deep lake. The results demonstrated that the model well represents the temporal and vertical variations of water temperature that allows the internal waves to be energized correctly at the basin scale. Both the model and thermistor chain (TC) data identified the presence of Kelvin modes and Poincare mode internal waves. The lake was weakly stratified during the study period, and produced large amplitude (up to 60 m) of internal oscillations after several wind events and partial upwelling near the southwestern lake. The partial upwelling and followed coastal jets could be an important feature of basin-scale internal waves because they can cause re-suspension and horizontal transport of fine particles from nearshore to offshore. The internal wave dynamics can be also associated with the distributions of water quality variables such as dissolved oxygen and nutrients in the lake. Thus, the basin-scale internal waves and horizontal circulation processes need to be accurately modeled for the correct simulation of the dissolved and particulate contaminants, and biogeochemical processes in the lake.

Comment on "Estimation of Net Radiation in Three Different Plant Functional Types in Korea" (한국의 세 개의 다른 식생기능형태에서의 순복사 추정 논문에 대한 의견)

  • Kang, Min-Seok;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.3
    • /
    • pp.118-122
    • /
    • 2009
  • Net Radiation ($R_N$) is the major driving force for biophysical and biogeochemical processes in the terrestrial ecosystems, which is one of the most critical variables in both measurement and modeling. Despite its importance, there are only 10 weather stations conducting $R_N$ measurements among the 544 stations operated by Korea Meteorological Administration (KMA; KMA, 2008). The measurement of incoming shortwave radiation ($R_S{\downarrow}$) is, however, conducted at 22 stations while that of sunshine duration is conducted at all the manned stations. In this context, the recent research for estimating $R_N$ using $R_S{\downarrow}$ in Korean peninsula by Kwon (2009) is of great worth. The author used a linear regression and the radiation balance methods. We generally agree with the author that, in terms of simplicity and practicality, both methods show reliable applicability for estimating $R_N$. We noted, however, that the author's experimental method and analysis need some clarification and improvement, that are addressed in the following perspectives: (1) the use of daily integrated data for regression, (2) the use of measured albedo, (3) the use of linear coefficients for whole year data, (4) methodological improvement, (5) the use of sunshine duration, and (6) the error assessment.