DOI QR코드

DOI QR Code

Impact of Iron Scavenging and Desorption Parameters on Chlorophyll Simulation in the Tropical Pacific within NEMO-TOPAZ

  • Lee, Hyomee (Division of Science Education & Institute of Fusion Science, Jeonbuk National University) ;
  • Moon, Byung-Kwon (Division of Science Education & Institute of Fusion Science, Jeonbuk National University) ;
  • Park, Jong-Yeon (Division of Earth and Environmental Science, Jeonbuk National University) ;
  • Kim, Han-Kyoung (Division of Science Education & Institute of Fusion Science, Jeonbuk National University) ;
  • Jung, Hyun-Chae (Mirae Climate Co., Ltd.) ;
  • Wie, Jieun (Division of Science Education & Institute of Fusion Science, Jeonbuk National University) ;
  • Park, Hyo Jin (Jeonju Jungang Middle School) ;
  • Byun, Young-Hwa (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Lim, Yoon-Jin (Numerical Modeling Center, Korea Meteorological Administration) ;
  • Lee, Johan (Operational Systems Development Department, National Institute of Meteorological Sciences)
  • Received : 2021.04.30
  • Accepted : 2021.08.17
  • Published : 2021.08.31

Abstract

Ocean biogeochemistry plays a crucial role in sustaining the marine ecosystem and global carbon cycle. To investigate the oceanic biogeochemical responses to iron parameters in the tropical Pacific, we conducted sensitivity experiments using the Nucleus for European Modelling of the Ocean-Tracers of Ocean Phytoplankton with Allometric Zooplankton (NEMO-TOPAZ) model. Compared to observations, the NEMO-TOPAZ model overestimated the concentrations of chlorophyll and dissolved iron (DFe). The sensitivity tests showed that with increasing (+50%) iron scavenging rates, chlorophyll concentrations in the tropical Pacific were reduced by approximately 16%. The bias in DFe also decreased by approximately 7%; however, the sea surface temperature was not affected. As such, these results can facilitate the development of the model tuning strategy to improve ocean biogeochemical performance using the NEMO-TOPAZ model.

Keywords

Acknowledgement

This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMI (KMI2018-03513) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C1008549). The main calculations were performed by using the supercomputing resource of the Korea Meteorological Administration (National Center for Meteorological Supercomputer). This work is part of the Ph.D. thesis of H. Lee.

References

  1. ARCCSS, 2018, MOM5 input data, Australian Research Council's Centre of Excellence for Climate System Science. https://climate-cms.unsw.wikispaces.net/Data. Accessed 22 November 2018.
  2. Aumont, O. and Bopp, L., 2006, Globalizing results from ocean in situ iron fertilization studies. Global Biogeochemical Cycles, 20(2), GB2017, https://doi.org/10.1029/2005GB002591.
  3. Bacon, M. P. and Anderson, R. F., 1982, Distribution of thorium isotopes between dissolved and particulate forms in the deep sea. Journal of Geophysical Research: Oceans, 87(C3), 2045-2056. https://doi.org/10.1029/JC087iC03p02045
  4. Breivik, O., Mogensen, K., Bidlot, J. R., Balmaseda, M. A., and Janssen, P. A., 2015, Surface wave effects in the NEMO ocean model: Forced and coupled experiments. Journal of Geophysical Research, Oceans, 120(4), 2973-2992, https://doi.org/10.1002/2014JC010565.
  5. Charlson, R. J., Lovelock, J. E., Andreae, M. O., Warren, S. G., 1987, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655-661, https://doi.org/10.1038/326655a0.
  6. Dunne, J. P., Gnanadesikan, A., Sarmiento, J. L., and Slater, R. D., 2010, Technical description of the prototype version (v0) of Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ) ocean biogeochemical model as used in the Princeton IFMIP model. Biogeosciences, 7(11), 3593. https://doi.org/10.5194/bg-7-3593-2010
  7. Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E., 2016, Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937-1958, 10.5194/gmd-9-1937-2016.
  8. Graham, 2014, The importance of eddy permitting model resolution for simulation of the heat budget of tropical instability waves. Ocean Modelling, 79, 21-32, https://doi.org/10.1016/j.ocemod.2014.04.005.
  9. Hamilton, D. S., Moore, J. K., Arneth, A., Bond, T. C., Carslaw, K. S., Hantson, S., Ito, A., Kaplan, J. O., Lindsay, K., Nieradzik, L., Rathod, S. D., Scanza, R. A., and Mahowald, N. M., 2020, Impact of changes to the atmospheric soluble iron deposition flux on ocean biogeochemical cycles in the Anthropocene. Global Biogeochemical Cycles, 34(3), e2019GB006448, https://doi.org/10.1029/2019GB006448.
  10. Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T. C., Smith, T. M., Thorne, P. W., Woodruff, S. D., and Zhang, H.-M., 2015, Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: Upgrads and Intercomparisons. Journal of Climate, 28(3), 911-930, https://doi.org/10.1175/JCLI-D-14-00006.1.
  11. Ito, A., Ye, U., Yamamoto, A., Watanabe, M., and Aita, M. N., 2019, Responses of ocean biogeochemistry to atmospheric supply of lithogenic and pyrogenic iron-containing aerosols. Geological Magazine, 157(5), 741-766, https://doi.org/10.1017/S0016756819001080.
  12. Jochum, M., Yeager, S., Lindsay, K., Moore K., and Murtugudde, R., 2009, Quantification of the feedback between phytoplankton and ENSO in the community climate system model. Journal of Climate, 23, 2916-2925, https://doi.org/10.1175/2010JCLI3254.1.
  13. Johnson, K. S., Gordon, R. M., and Coale, K. H., 1997, What controls dissolved iron concentrations in the world ocean? Marine chemistry, 57(3-4), 137-161. https://doi.org/10.1016/S0304-4203(97)00043-1
  14. Jung, H.-C. and Moon, B.-K, 2019. Impacts of Albedo and Wind Stress Changes due to Phytoplankton on Ocean Temperature in a Coupled Global Ocean-biogeochemistry Model. Journal of the Korean Earth Science Society, 40(4), pp. 392-405, https://doi.org/10.5467/JKESS.2019.40.4.392.
  15. Jung, H.-C., Moon, B.-K., Lee, H., Choi, J.-H., Kim, H.-K., Park, J.-Y., Byun, Y.-H., Lim, Y.-J., and Lee, J, 2020. Development and Assessment of NEMO(v3.6)-TOPAZ(v2), a Coupled Global Ocean Biogeochemistry Model. Asia-Pacific Journal of Atmospheric Sciences, 56, 411-428, https://doi.org/10.1007/s13143-019-00147-4.
  16. Kang, X., Zhang, R. H., Gao, C., and Zhu, J., 2017, An improved ENSO simulation by representing chlorophyll-induced climate feedback in the NCAR Community Earth System Model. Scientific Reports., 7, 1-9, https://doi.org/10.1038/s41598-017-17390-2.
  17. Kim, A.-H., Yum, S. S., Lee, H., Chang, D. Y., Shim, S., 2018, Polar cooling effect due to increase of phytoplankton and dimethyl-sulfide emission. Atmosphere, 9, 384, https://doi.org/10.3390/atmos9100384.
  18. Large, W.G. and Yeager, S.G., 2009, The global climatology of an interannually varying air-sea flux data set. Climate Dynamics, 33, 341-364, https://doi.org/10.1007/s00382-008-0441-3.
  19. Libes, S. M., 2009, Introduction to Marine Biogeochemistry. Academic Press, New York, USA, 909 p.
  20. Liu, H., Zhang, X., Li, W., Yu, Y., and Yu, R., 2004, An Eddy-Permitting Oceanic General Circulation Model and Its Preliminary Evaluation. Advances in Atmospheric Sciences, 21(5), 675-690, http://doi.org/10.1007/BF02916365.
  21. McClain, C. R., Cleave, M. L., Feldman, G. C., Gregg, W. W., Hooker, S. B., and Kuring, N., 1998, Science quality seaWIFS data for global biosphere research. Sea Technology, 39, 10-16.
  22. NEMO Consortium. (2019). NEMO Reference configurations inputs (Version v3.6-patch) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.2640767.
  23. Orr, J. C., Najjar, R. G., Aumont, O., Bopp, L., Bullister, J. L., Danabasoglu, G., Doney, S. C., Dunne, J. P., Dutay, J.-C., Graven, H., Griffies, S. M., John, J. G., Joos, F., Levin, I., Lindsay, K., Matear, R. J., McKinley, G. A., Mouchet, A., Oschlies, A., Romanou, A., Schlitzer, R., Tagliabue, A., Tanhua, T., and Yool, A., 2017, Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP). Geoscientific Model Development, 10, 2169-2199, https://doi.org/10.5194/gmd-10-2169-2017.
  24. Park, H.-J., Moon, B.-K., Wie, J., Kim, K.-Y., Lee, J., and Byun, Y.-H., 2017, Biophysical effects simulated by an ocean general circulation model coupled with a biogeochemical model in the tropical Pacific. Journal of Korean Earth Science Society, 38, 469-480, https://doi.org/10.5467/JKESS.2017.38.7.469.
  25. Park, J.-Y., Kug, J.-S., Seo, H., and Bader, J., 2014, Impact of bio-physical feedbacks on the tropical climate in coupled and uncoupled GCMs. Climate Dynamics, 43, 1811-1827, https://doi.org/10.1007/s00382-013-2009-0.
  26. Schneider, B., Bopp, L., Gehlen, M., Segschneider, J., Frolicher, T. L., Cadule, P., Friedlingstein, P., Doney, S. C., Behrenfeld, M. J., and Joos, F., 2008, Climateinduced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosciences, 5, 597-614, https://doi.org/10.5194/bg-5-597-2008.
  27. Tagliabue, A., Aumont, O., DeAth, R., Dunne, J. P., Dutkiewicz, S., Galbraith, E., Misumi, K., Moore, J. K., Ridgwell, A., Sherman, E., Stock, C., Vichi, M., Volker, C., and Yool, A., 2016, How well do global ocean biogeochemistry models simulate dissolved iron distributions? Global Biogeochemical Cycles, 30(2), 149-174, https://doi.org/10.1002/2015GB005289.
  28. Tagliabue, A., Bowie, A. R., Boyd, P. W., Buck, K. N., Johnson, K. S., and Saito, M. A., 2017, The integral role of iron in ocean biogeochemistry. Nature, 543(7643), 51-59, doi:10.1038/nature21058.
  29. Vanniere, B., Guilyardi, E., Madec, G., Doblas-Reyes, F. J., and Woolnough, S., 2013, Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Climate Dynamics, 40(3-4), 963-981. https://doi.org/10.1007/s00382-012-1429-6
  30. Williams, R. G. and Follows, M. J., 2011, Ocean dynamics and the carbon cycle: Principles and mechanisms. Cambridge University Press, New York, USA, 404 p.