• Title/Summary/Keyword: biogas

Search Result 474, Processing Time 0.036 seconds

Entomological approach to the impact of ionophore-feed additives on greenhouse gas emissions from pasture land in cattle

  • Takahashi, Junichi;Iwasa, Mitsuhiro
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • The suppressive effect of monensin as an ionophore-feed additive on enteric methane (CH4) emission and renewable methanogenesis were evaluated. To clarify the suppressive effect of monensin a respiratory trial with head cage was performed using Holstein-Friesian steers. Steers were offered high concentrate diets (80% concentrate and 20% hay) ad libitum with or without monensin, galacto-oligosaccharides (GOS) or L-cysteine. Steers that received monensin containing diet had significantly (p < 0.01) lower enteric CH4 emissions as well as those that received GOS containing diet (p < 0.05) compared to steers fed control diets. Thermophilic digesters at 55℃ that received manure from steers fed on monensin diets had a delay in the initial CH4 production. Monensin is a strong inhibitor of enteric methanogenesis, but has a negative impact on biogas energy production at short retention times. Effects of the activity of coprophagous insects on CH4 and nitrous oxide (N2O) emissions from cattle dung pats were assessed in anaerobic in vitro continuous gas quantification system modified to aerobic quantification device. The CH4 emission from dungs with adults of Caccobius jessoensis Harold (dung beetle) and the larvae of the fly Neomyia cornicina (Fabricius) were compared with that from control dung without insect. The cumulative CH4 emission rate from dung with dung insects decreased at 42.2% in dung beetles and 77.8% in fly larvae compared to that from control dung without insects. However, the cumulative N2O emission rate increased 23.4% in dung beetles even though it reduced 88.6% in fly larvae compared to dung without coprophagous insects. It was suggested that the antibacterial efficacy of ionophores supplemented as a growth promoter still continued even in the digested slurry, consequently, possible environmental contamination with the antibiotics might be active to put the negative impact to land ecosystem involved in greenhouse gas mitigation when the digested slurry was applied to the fields as liquid manure.

Improvement of Organic Substances Indicators by Linked Ultra Violet-Advanced Oxidation Process After Ozonation for Anaerobic Digested Wastewater (소화탈리액 대상 오존 전처리와 Ultra Violet-Advanced Oxidation Process 연계 처리를 통한 유기물질 지표 개선)

  • Jaiyeop Lee;Jesmin Akter;Ilho Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.5
    • /
    • pp.253-259
    • /
    • 2023
  • Bioreactors are devices used by sewage treatment plants to process sewage and which produce active sludge, and sediments separated by solid-liquid are treated in anaerobic digestion tanks. In anaerobic digestion tanks, the volume of active sludge deposits is reduced and biogas is produced. After dehydrating the digestive sludge generated after anaerobic digestion, anaerobic digested wastewater, which features a high concentration of organic matters, is generated. In this study, the decomposition of organic carbon and nitrogen was studied by advanced oxidation process. Ozone-microbubble flotation process was used for oxidation pretreatment. During ozonation, the TOC decreased by 11.6%. After ozone treatment, the TOC decreased and the removal rate reached 80.4% as a result of the Ultra Violet-Advanced Oxidation Process (UV-AOP). The results with regard to organic substances before and after treatment differed depending on the organic carbon index, such as CODMn, CODCr, and TOC. Those indexes did not change significantly in ozone treatment, but decreased significantly after the UV-AOP process as the linkage treatment, and were removed by up to 39.1%, 15.2%, and 80.4%, respectively. It was confirmed that biodegradability was improved according to the ratio of CODMn to TOC. As for the nitrogen component, the ammonia nitrogen component showed a level of 3.2×102 mg/L or more, and the content was maintained at 80% even after treatment. Since most of the contaminants are removed from the treated water and its transparency is high, this water can be utilized as a resource that contains high concentrations of nitrogen.

Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential with Pig Slurry (양돈슬러리를 이용한 혐기소화에서 미생물 첨가가 메탄발생에 미치는 영향)

  • Kim, Ji-Ae;Yoon, Young-Man;Jeong, Kwang-Hwa;Kim, Chang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1049-1057
    • /
    • 2012
  • The study investigated the biochemical methane potential (BMP) assay of pig slurry supplemented with mixed methanogens and cellulolytic bacteria to improve anaerobic digestion for methane production. For the BMP assay, 7 different microbial supplementation groups consisted of the cultures of mixed methanogens (M), Fibrobacter succinogenes (FS), Ruminococcus flavefaciensn (RF), R. albus (RA), RA+FS, M+RA+FS, and control. The cultures were added in the batch reactors with the increasing dose levels of 1% (0.5 mL), 3% (1.5 mL) and 5% (2.5 mL). Incubation for the BMP assay was carried out for 60 days at $38^{\circ}C$ using anaerobic digestate obtained from an anaerobic digester with pig slurry as inoculum. In results, 5% RF and RA+FS increased total biogas up to 8.1 and 8.4%, respectively, compared with that of control (p<0.05). All 5% microbial culture supplements significantly increased methane production up to 12.1~17.9% compared with that of control (p<0.05). Total solid (TS) and volatile solid (VS) digestion efficiencies showed no relationship to the increased supplementation levels of microbial cultures. After incubation, pH values in all treatment groups ranged between 7.527 and 7.657 indicating that methanogensis was not inhibited during the incubation. In conclusion, the results indicated that both hydrolysis and methanogenesis stages for methane production in anaerobic batch reactors were influenced by the supplemented microorganisms due to the chemical characteristics of pig slurry, but only the 5% supplementation level of all microbial culture supplements used in the experiment affected methane production.

Study on the Heat Transfer Phenomenon around Underground Concrete Digesters for Bigas Production Systems (생물개스 발생시스템을 위한 지하매설콘크리트 다이제스터의 열전달에 관한 연구)

  • 김윤기;고재균
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.1
    • /
    • pp.53-66
    • /
    • 1980
  • The research work is concerned with the analytical and experimental studies on the heat transfer phenomenon around the underground concrete digester used for biogas production Systems. A mathematical and computational method was developed to estimate heat losses from underground cylindrical concrete digester used for biogas production systems. To test its feasibility and to evaluate thermal parameters of materials related, the method was applied to six physical model digesters. The cylindrical concrete digester was taken as a physical model, to which the model,atical model of heat balance can be applied. The mathematical model was transformed by means of finite element method and used to analyze temperature distribution with respect to several boundary conditions and design parameters. The design parameters of experimental digesters were selected as; three different sizes 40cm by 80cm, 80cm by 160cm and l00cm by 200cm in diameter and height; two different levels of insulation materials-plain concrete and vermiculite mixing in concrete; and two different types of installation-underground and half-exposed. In order to carry out a particular aim of this study, the liquid within the digester was substituted by water, and its temperature was controlled in five levels-35。 C, 30。 C, 25。 C, 20。C and 15。C; and the ambient air temperature and ground temperature were checked out of the system under natural winter climate conditions. The following results were drawn from the study. 1.The analytical method, by which the estimated values of temperature distribution around a cylindrical digester were obtained, was able to be generally accepted from the comparison of the estimated values with the measured. However, the difference between the estimated and measured temperature had a trend to be considerably increased when the ambient temperature was relatively low. This was mainly related variations of input parameters including the thermal conductivity of soil, applied to the numerical analysis. Consequently, the improvement of these input data for the simulated operation of the numerical analysis is expected as an approach to obtain better refined estimation. 2.The difference between estimated and measured heat losses was shown to have the similar trend to that of temperature distribution discussed above. 3.It was found that a map of isothermal lines drawn from the estimated temperature distribution was very useful for a general observation of the direction and rate of heat transfer within the boundary. From this analysis, it was interpreted that most of heat losses is passed through the triangular section bounded within 45 degrees toward the wall at the bottom edge of the digesten Therefore, any effective insulation should be considered within this region. 4.It was verified by experiment that heat loss per unit volume of liquid was reduced as the size of the digester became larger For instance, at the liquid temperature of 35˚ C, the heat loss per unit volume from the 0. 1m$^3$ digester was 1, 050 Kcal/hr m$^3$, while at for 1. 57m$^3$ digester was 150 Kcal/hr m$^3$. 5.In the light of insulation, the vermiculite concrete was consistently shown to be superior to the plain concrete. At the liquid temperature ranging from 15。 C to 350 C, the reduction of heat loss was ranged from 5% to 25% for the half-exposed digester, while from 10% to 28% for the fully underground digester. 6.In the comparison of heat loss between the half-exposed and underground digesters, the heat loss from the former was fr6m 1,6 to 2, 6 times as much as that from the latter. This leads to the evidence that the underground digester takes advantage of heat conservation during winter.

  • PDF

Treatment of Garbage Leachate with Two-phase Anaerobic Digestion Coupled with Ultra Filtration (막결합형 2상 혐기성 소화 공정을 이용한 음식물 탈리액 처리)

  • Lee, Eun-Young;Kim, Hyung-Kuk;Giang, Luu Thi Thuy;Bae, Jae-Ho;Bae, Young-Shin;Won, Jong-Choul;Lee, Jae-Hoon;Park, Seung-Kyun;Cho, Yong-Wan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.997-1006
    • /
    • 2009
  • Organic removal efficiency and methane production rate, a feasibility of power generation from biogas, and the optimum conditions for membrane operation were evaluated for the pilot scale (5 tons/day) two-phase anaerobic digestion coupled with ultra filtration (TPADUF) system fed with garbage leachate. The TPADUF system is consisted of a thermophilic acidogenic reactor, a mesophilic methanogenic reactor, and an UF membrane. When garbage leachate with 150 g/L of TCOD was fed to the TPADUF up to organic loading rate (OLR) of 11.1 g COD/L/d, the effluent TCOD was lower than 6 g/L and the average removal efficiencies of TCOD and SCOD were higher than 95%. The methane composition of the gas was 65%, and the methane yield was 39 $m^3/m^3$ garbage leachatefed, 260 $m^3$/tons $COD_{added}$, or 270 $m^3$/tons $COD_{removed}$, even there was some gas leak. The power production per consumed gas was 0.96 kWh/$m^3$ gas or 1.49 kWh/$m^3$ methane. This lower power production efficiency mainly due to the small capacity of gas engine (15 kW class). The membrane was operated at the average flux of 10 L/$m^2$/hr. When the flux decreased, washing with water and chemical (NaOCl) was conducted to restore the flux. In the TPADUF system, optimum pH could be maintained without alkali addition by recycling the membrane concentrate or mixed liquor of the methanogenic digester to the acidogenic reactor. Also, partial production of methane in the acidogenic reactor had a positive effect on lowering the OLR of the methanogenic reactor.

Membrane Process Using Polysulfone Hollow Fiber Membranes for Vehicle Fuel Production from Bio-Methane Mixture (폴리설폰 중공사막 모듈을 이용한 자동차 연료용 고순도 바이오메탄 분리공정 연구)

  • Kim, Jee Sang;Kong, Chang In;Park, Bo Ryoung;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.213-222
    • /
    • 2014
  • In this study, 2-stage recirculation membrane process was developed for purification of high purity bio-methane for the vehicle fuel application. Pure gas permeation and mixture gas permeation test were done as a function of methane content and pressure in the feed using polysulfone membrane modules. 2-stage membrane plant was designed, constructed in a food waste treatment cite. Dehumidification, dry desulfurization, and desiloxane plants are installed for the removal of $H_2O$, $H_2S$ and siloxane in the biogas. Permeation test were done with the pre-treated methane mixture in terms of methane purity and recovery by adjusting the ratio of membrane area (1:1, 1:3, 2:2) in the first and second membrane modules in the plant. When membrane area of 2 stage increased to $3m^2$ from $1m^2$ at 1-stage membrane area of $1m^2$, the feed rate and $CH_4$ recovery at 95% methane purity were increased from 47.1% to 92.5% respectively. When the membrane area increased two-fold (1:1 to 2:2), $CH_4$ recovery increased from 47.1% to 88.3%. When the feed flow rate was increased, in 1:3 ratio, final purity of the methane is reduced, the methane recovery is increased. When operating pressure was increased, the feed rate was increased and recovery was slightly decreased. From this result, membrane area, feed pressure and feed rate could be the important factor to the performance of the membrane process.

Effects of Antimicrobials on Methane Production in an Anaerobic Digestion Process (혐기소화공정에서 항생항균물질이 메탄생성에 미치는 영향)

  • Oh, Seung-Yong;Park, Noh-Back;Park, Woo-Kyun;Chun, Man-Young;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.295-303
    • /
    • 2011
  • BACKGROUND: Anaerobic digestion process is recently adapted technology for treatment of organic waste such as animal manure because the energy embedded in the waste can be recovered from the waste while the organic waste were digested. Ever increased demand for consumption of meat resulted in the excessive use of antimicrobials to the livestocks for more food production. Most antimicrobials administered to animals are excreted through urine and feces, which might highly affect the biological treatment processes of the animal manure. The aim of this study was to investigate the effects of antimicrobials on the efficiency of anaerobic digestion process and to clarify the interactions between antimicrobials and anaerobes. METHODS AND RESULTS: The experiment was consisted of two parts 1) batch test to investigate the effects of individual antibiotic compounds on production of methane and VFAs(volatile fatty acids), and removal efficiency of organic matter, and 2) the continuous reactor test to elucidate the effects of mixed antimicrobials on the whole anaerobic digestion process. The batch test showed no inhibitions in the rate of methane and VFAs production, and the rate of organic removal were observed with treatment at 1~10 mg/L of antimicrobials while temporary inhibition was observed at 50 mg/L treatment. In contrast, treatment of 100 mg/L antimicrobials resulted in continuous decreased in the rate of methane production and organic removal efficiency. The continuous reactor test conduced to see the influence of the mixed antimicrobials showed only small declines in the methane production and organic matter removal when 1~10 mg/L of combined antimicrobials were applied but this was not significant. In contrast, with the treatment of 50 mg/L of combined antimicrobials, the rate of organic removal efficiency in effluent decreased by 2~15% and the rate of biogas production decreased by 30%. CONCLUSION(s): The antimicrobials remained in the animal manure might not be removed during the anaerobic digestion process and hence, is likely to be released to the natural ecosystem. Therefore, the efforts to decline the usage of antimicrobials for animal farming would be highly recommended.

A study on the introduction of organic waste-to-energy incentive system(I): Precise monitoring of biogasification (유기성폐자원에너지 인센티브제도 도입방안 연구(I): 바이오가스화 정밀모니터링)

  • Kwon, Jun-Hwa;Moon, Hee-Sung;Lee, Won-Seok;Lee, Dong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.67-76
    • /
    • 2021
  • Biogasification is a technology that produces environmentally friendly fuel using methane gas generated in the process of stably decomposing and processing organic waste. Biogasification is the most used method for energy conversion of organic waste with high moisture content, and is a useful method for organic waste treatment following the prohibition of direct landfill (2005) and marine dumping (2013). Due to African Swine Fever (ASF), which recently occurred in Korea, recycling of wet feed is prohibited, and consumers such as dry feed and compost are negatively recognized, making it difficult to treat food waste. Accordingly, biogasification is attracting more attention for the treatment and recycling of food waste. Korea's energy consumption amounted to 268.41 106toe, ranking 9th in the world. However, it is an energy-poor country that depends on foreign imports for about 95.8% of its energy supply. Therefore, in Korea, the Renewable Energy Portfolio Standard (RPS) is being introduced. The domestic RPS system sets the weight of the new and renewable energy certificate (REC, Renewable energy certificate) of waste energy lower than that of other renewable energy. Therefore, an additional incentive system is required for the activation of waste-to-energy. In this study, the operation of an anaerobic digester that treats food waste, food waste Leachate and various organic wastes was confirmed. It was intended to be used as basic data for preparing the waste-to-energy incentive system through precise monitoring for a certain period of time. Four sites that produce biogas from organic waste and use them for power generation and heavy gas were selected as target facilities, and field surveys and sampling were conducted. Basic properties analysis was performed on the influent sample of organic waste and the effluent sample according to the treatment process. As a result of the analysis of the properties, the total solids of the digester influent was an average of 12.11%, and the volatile solids of the total solids were confirmed to be 85.86%. BOD and CODcr removal rates were 60.8% and 64.8%. The volatile fatty acids in the influent averaged 55,716 mg/L. It can be confirmed that most of the volatile fatty acids were decomposed and removed with an average reduction rate of 92.3% after anaerobic digestion.

A study on inspection methods for waste treatment facilities(I): Derivation of impact factor and mass·energy balance in waste treatment facilities (폐기물처리시설의 세부검사방법 마련연구(I): 공정별 주요인자 도출 및 물질·에너지수지 산정)

  • Pul-Eip Lee;Eunhye Kwon;Jun-Ik Son;Jun-Gu Kang;Taewan Jeon;Dong-Jin Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • Despite the continuous installation and regular inspection of waste treatment facilities, complaints about excessive incineration and illegal dumping stench continue to occur at on-site treatment facilities. In addition, field surveys were conducted on the waste treatment facilities currently in operation (6 type) to understand the waste treatment process for each field, to grasp the main operating factors applied to the inspection. In addition, we calculated the material·energy balance for each main process and confirmed the proper operation of the waste disposal facility. As a result of the site survey, in the case of heat treatment facilities such as incineration, cement kilns, and incineration heat recovery facilities, the main factors are maintenance of the temperature of the incinerator required for incineration and treatment of the generated air pollutants, and in the case of landfill facilities Retaining wall stability, closed landfill leachate and emission control emerged as major factors. In the case of sterilization and crushing facilities, the most important factor is whether or not sterilization is possible (apobacterium inspection).In the case of food distribution waste treatment facilities, retention time and odor control during fermentation (digestion, decomposed) are major factors. Calculation results of material balance and energy resin for each waste treatment facility In the case of incineration facilities, it was confirmed that the amount of flooring materials generated is about 14 % and the amount of scattering materials is about 3 % of the amount of waste input, and that the facility is being operated properly. In addition, among foodwaste facilities, in the case of an anaerobic digestion facility, the amount of biogas generated relative to the amount of inflow is about 17 %, and the biogas conversion efficiency is about 81 %, in the case of composting facility, about 11 % composting of the inflow waste was produced, and it was comfirmend that all were properly operated. As a result, in order to improve the inspection method for waste treatment facilities, it is necessary not only to accumulate quantitative standards for detailed inspection methods, but also to collect operational data for one year at the time of regular inspections of each facility, Grasping the flow and judging whether or not the treatment facility is properly operated. It is then determined that the operation and management efficiency of the treatment facility will increase.

Effects of Magnetite(Fe3O4) as Electrical Conductor of Direct Interspecies Electron Transfer on Methane Yield of Food Wastewater (종간직접전자전달 전도체로서 Magnetite(Fe3O4)가 음폐수의 메탄생산에 미치는 영향)

  • Jun-Hyeong Lee;Tae-Bong Kim;Chang-Hyun Kim;Young-Man Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.15-26
    • /
    • 2023
  • Methane production by anaerobic digestion occurs through interspecies electron transfer (DIET), a synthetic metabolism between acetic and methanate bacteria through hydrolysis and acid production steps. In this study, to improve methane yield, the effect of addition of magnetite (Fe3O4), a conductor promoting DIET on methane production in food wastewater was investigated, and the effect on methane yield was assessed by methane potential (Bu) and maximum methane production rate [Rm(t0)] by the operation of batch type anaerobic reactor adding Fe3O4. The Bu and Rm(t0) of food wastewater without Fe3O4 were 0.496 Nm3/kg-VSadded and 38.24 mL/day, respectively. The t0 which reached to Rm appeared at 21.06 days during the operation of the anaerobic reactor. The Bu of food wastewater with Fe3O4 was 0.502, 0.498, 0.512, 0.510, 0.518, 0.523, 0.524, 0.540, and 0.549 Nm3/kg-VSadded in the treatment of 5, 10, 15, 20, 25, 30, 40, 70, and 100mM-Fe3O4, respectively, and the Bu significantly increased to 36.95% with the addition of magnetite in the addition of 15mM-Fe3O4. And, the addition of Fe3O4 shortened the duration to reach Rm from 21.06 days to the maximum of 14.67 days by the addition of Fe3O4. Therefore, the methane yield and production rate of food wastewater significantly improved with the addition of Fe3O4.