• 제목/요약/키워드: biogas

검색결과 475건 처리시간 0.027초

Conversion of organic residue from solid-state anaerobic digestion of livestock waste to produce the solid fuel through hydrothermal carbonization

  • Yang, Seung Kyu;Kim, Daegi;Han, Seong Kuk;Kim, Ho;Park, Seyong
    • Environmental Engineering Research
    • /
    • 제23권4호
    • /
    • pp.456-461
    • /
    • 2018
  • The solid-state anaerobic digestion (SS-AD) has promoted the development and application for biogas production from biomass which operate a high solid content feedstock, as higher than 15% of total solids. However, the digested byproduct of SS-AD can be used as a fertilizer or as solid fuel, but it has serious problems: high moisture content and poor dewaterability. The organic residue from SS-AD has to be improved to address these problems and to make it a useful alternative energy source. Hydrothermal carbonization was investigated for conversion of the organic residue from the SS-AD of livestock waste to solid fuels. The effects of hydrothermal carbonization were evaluated by varying the reaction temperatures within the range of $180-240^{\circ}C$. Hydrothermal carbonization increased the calorific value through the reduction of the hydrogen and oxygen contents of the solid fuel, in addition to its drying performance. Therefore, after the hydrothermal carbonization, the H/C and O/C atomic ratios decreased through the chemical conversion. Thermogravimatric analysis provided the changed combustion characteristics due to the improvement of the fuel properties. As a result, the hydrothermal carbonization process can be said to be an advantageous technology in terms of improving the properties of organic waste as a solid-recovered fuel product.

음식물류폐기물의 성상별 온도변화에 따른 혐기성소화 효율 비교 연구 (Comparison of Anaerobic Digestion Efficiency with Different Temperature of Food Wastes)

  • 황광현;김동익
    • 한국물환경학회지
    • /
    • 제35권4호
    • /
    • pp.332-339
    • /
    • 2019
  • A comparative study on the anaerobic digestion efficiency according to the temperature change was conducted considering the characteristics of domestic food wastes with high water content of about 80 % or more. The substrate was tested for anaerobic digestion efficiency in two substrates, a liquid component separated naturally from food waste and food waste itself. In the anaerobic digestion experiments, the digestion efficiency was the highest at $55^{\circ}C$ (thermophilic temperature). However, the digestion efficiency at $45^{\circ}C$(middle high temperature) was lower than that at $35^{\circ}C$(mesophilic temperature). The comparison of general food wastes anaerobic digestion requiring 30 days of hydraulic retention time to the liquid component indicated a stable digestion efficiency even after 15 days of hydraulic retention time.In the experiments conducted on food waste, the digestion efficiency at $55^{\circ}C$ was higher than that at $35^{\circ}C$. When the food waste, especially the liquid component originating from food waste, is treated by anaerobic digestion method, the mesophilic temperature and thermophilic temperature conditions are more favorable in the digestion efficiency than the middle high temperature ($45^{\circ}C$). However, when applying thermophilic or mesophilic temperature anaerobic digestion process operation in the field, the amount of energy input should be considered.

Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8

  • Li, Wen;Samarasinghe, S.A.S.C.;Bae, Tae-Hyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.156-163
    • /
    • 2018
  • High-performance mixed-matrix membranes that comprise both zeolitic imidazolate framework-8 (ZIF-8) and graphene oxide (GO) were synthesized with a solution casting technique to realize excellent $CO_2/CH_4$ separation. The incorporation of ZIF-8 nanocrystals alone in ODPA-TMPDA polyimide can be used to significantly enhance $CO_2$ permeability compared with that of pure ODPA-TMPDA. Meanwhile, the addition of a GO nanostack alone in ODPA-TMPDA contributes to improved $CO_2/CH_4$ selectivity. Hence, a composite membrane that contains both fillers displays significant enhancements in $CO_2$ permeability (up to 60%) and $CO_2/CH_4$ selectivity (up to 28%) compared with those of pure polymeric membrane. Furthermore, in contrast to the ZIF-8 mixed-matrix membrane, which showed decreased mechanical stability, it was found that the incorporation of GO could improve the mechanical strength of mixed-matrix membranes. Overall, the synergistic effects of the use of both fillers together are successfully demonstrated in this paper. Such significant improvements in the mixed-matrix membrane's $CO_2/CH_4$ separation performance and mechanical strength suggest a feasible and effective approach for potential biogas upgrading and natural gas purification.

PERFORMANCE OF TWO-PHASE UASB REACTOR IN ANAEROBIC TREATMENT OF WASTEWATER WITH SULFATE

  • Oh, Sae-Eun
    • Environmental Engineering Research
    • /
    • 제12권1호
    • /
    • pp.8-15
    • /
    • 2007
  • Two phase UASB reactors for treating wastewater with sulfate were operated to assess the performance and competition of organics between sulfate reducing bacteria(SRB) and methane producing bacteria(MPB), and the change of characteristics of microorganisms. The reactors were fed in parallel with a synthetic wastewater of 4,000-5,000 mgCOD/L and sulfate concentration of $800-1,000\;mgSO_4/L$. In the MPR(methane producing reactor) and CR(control reactor), COD removal efficiencies were 90% and 60%, respectively, at the OLR(organic loading rate) of 6 gCOD/L, while the amount of biogas and methane content were 6.5 L/day and 80%, and 3 L/day and 50%, respectively. However, the portion of electron flow used by SRB at the OLR of 6 gCOD/L day in MPR and CR was 3% and 26%, respectively. This indicated that the increase of OLR of wastewater containing high sulfate like CR resulted in activity decrease and cell decay of MPB, while SRB was adapted immediately to new environment. The MPB activities in MPR and CR were 2 and $0.38\;kgCH_4-COD$/gVSS day at the OLR of 6 gCOD/L. This indicated hat SRB dominated gradually over MPB during long-term operation with wastewater containing sulfate as a consequence of outcompeting of SRB over MPB. In addition, the solution within AFR was maintained around pH 5.0, the MPB such as Methanothrix spp. which was very important to formation of granules was detached from the surface of granules due to the decrease of activity by limitation of substrate transportation into MPB. Therefore, a significant amount of sludge was washed out from the reactor.

Potential Methane Production on Anaerobic Co-digestion of Swine Manure and Food Waste

  • Shin, Joung-Du;Park, Sang-Won;Kim, Sang-Hyoun;Duangmanee, Jack;Lee, Po-Heng;Sung, Shi-Hwu;Lee, Bong-Hoon
    • 한국환경농학회지
    • /
    • 제27권2호
    • /
    • pp.145-149
    • /
    • 2008
  • Anaerobic co-digestion of swine manure and food waste for biogas production was performed in serum bottles at various volatile solids(VS) contents and mixing ratios of two substrates(swine manure:food waste=$100:0{\sim}0:100$). Through kinetic mode of surface methodology, the methane production was fitted to a Gompertz equation. The ultimate methane production potential of swine manure alone was lower than that of food waste regardless of VS contents. However, it was appeared that maximum methane production potentials in 80 : 20 of the mixing rate at VS 3% was enhanced at 144.7%, compared to its only swine manure. The potential increased up to 815.71 ml/g VS fed as VS concentration and food composition increased up to 3.0% and 20%, respectively. The ultimate amount of methane produced had significantly a positive relationship with that of methane yield rate. Overall, it would be strongly recommended that feeding stocks use 20% of mixing ratio of food waste based on VS 3% contents when operating the anaerobic reactor on site at $35^{\circ}C$ if not have treatment of its anaerobic waste water.

Low Calorific Gasturbine 매립지 적용 및 유리온실 운용기술 설계 (Design for Landfill Gas Application by Low Calorific Gas Turbine and Green House Optimization Technology)

  • 허광범;박정극;이정빈;임상규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.244.1-244.1
    • /
    • 2010
  • Bio energy development by using Low Calorific Gas Turbine(LCGT) has been developed for New & Renewable energy source for next generation power system, low fuel and operating cost method by using the renewable energy source in landfill gas (LFG), Food Waste, water waste and Livestock biogas. Low calorific fuel purification by pretreatment system and carbon dioxide fixation by green house system are very important design target for evaluate optimum applications for bio energy. Main problems and accidents of Low Calorific Gas Turbine system was derived from bio fuel condition such as hydro sulfide concentration, siloxane level, moisture concentration and so on. Even if the quality of the bio fuel is not better than natural gas, LCGT system has the various fuel range and environmental friendly power system. The mechanical characterisitics of LCGT system is a high total efficiency (>70%), wide range of output power (30kW - 30MW class) and very clean emmission from power system (low NOx). Also, we can use co-generation system. A green house designed for four different carbon dioxide concentration from ambient air to 2000 ppm by utilizing the exhaust gas and hot water from LCGT system. We look forward to contribute the policy for Renewable Portfolio Standards(RPS) by using LCGT power system.

  • PDF

혐기성 BAC 유동층 반응기에서 Start-up 방법 및 미생물 부착 특성 연구 (A Study on the Start-up Method and Characteristics of Microorganisms Attachment in an Anaerobic BAC FluidizedBed Reactor)

  • 박동일;신승훈;안재동;최석규
    • 한국환경보건학회지
    • /
    • 제22권1호
    • /
    • pp.82-90
    • /
    • 1996
  • The objectives of this study were to examine the start-up method and characteristics of biomass attachment on the media in an anaerobic fluidized bed reactor(AFBR). The media adopted was the granular activated carbon which was successfully capable of adsorbing organics and biomass. The reactor was operated at 5 kg $COD/m^3\cdot day$ and 24hr of HRT. There were important problems in the AFBR's start-up, which has been reported very long and unstable. Therefore, this research was to solve the problem of the start-up and it was performed, comparing two start-up ways that were initial fluidized system and initial static-fluidized system. The results were summarized as follows: (1) On the whole initial static-fluidized system was superior to initial fluidized system in the aspects of biogas production rate, methane content and COD removal efficiency etc. (2) At the steady state methane production rate and recoverable bioenergy of initial static-fluidized system were $2.074 m^3CH_4/m^3\cdot day$, $0.488 m^3CH_4/kgCOD_{removed}\cdot day$, and 81.3kcal/day, respectively. (3) Thickness of biofilm was about $5.11 \mu m$, $\rho_{bw}$ and $\rho_{bd}$ were $1.022 g/cm^3, 0.0953g/cm^3$ respectively. (4) Biomass concentration of fluidized state was about 35 mg/g GAC. In conclusion the efficient method on the start-up of the AFBR using GAC as media was initial static-fluidized system and the period of static state needed to reach steady state was considered about twenty days.

  • PDF

30kW급 LFG 가스터빈 발전용 연료화 정제시스템 개발 (Development of Fuel Conditioning System for 30 kW-class LFG Gasturbine Power Generation)

  • 허광범;박정극;임상규;이정빈
    • 신재생에너지
    • /
    • 제6권1호
    • /
    • pp.29-37
    • /
    • 2010
  • Biogas is a carbon neutral energy and consists of mostly methane and carbon dioxide, with smaller amounts of water vapor, and trace amounts of $H_2S$, Siloxane and other impurities. Hydrogen sulfide and Siloxane usually must be removed before the gas can be used for generation of electricity or heat. The goals of this project are to develope the Fuel conditioning system of Land Fill Gas for 30kW-Micro Gas Turbine co-generation system. The fuel conditioning system mainly consists of $H_2S$ removal system, Land Fill Gas compressor, Siloxane removal system and many filtering systems. The fuel requirement of 30kW MGT is at least 32% of $CH_4$, $H_2S$ (<30 ppm), Siloxane (<5ppb) and supply pressure (> 0.6 MPa) from LFG compressor. Main mechnical charateristics of Micro Gas Turbine system by using LFG have the specific performance; 1) high speed turbine speed (96,000 rpm) 2) very clean emmission NOx (<9 ppm) 3) high efficiency of energy conversion rate. This paper focuses on the development of design technology for LFG fuel conditioning system. The study also has the plan to replace the fuel of gas turbine and other distributed power systems. As the increase of Land Fill Gas (LFG), this system help to contribute to spread more New & Renewable Energy and the establishment of Renewable Portfolio Standards (RPS) for Korea.

상분리 혐기성공정에 의한 양돈폐수로부터 고순도 메탄회수 (Recovery of High-Purity Methane from Piggery Wastewater in the Phase-Separated Anaerobic Process)

  • 정진영;정윤철;유창봉
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.210-213
    • /
    • 2008
  • The purpose of this study is to investigate the performances of organic removal and methane recovery in the full scale two-phase anaerobic system. The full scale two-phase anaerobic system was consists of an acidogenic ABR (Anaerobic Baffled Reactor) and a methanognic UASB (Upflow Anaerobic Sludge Blanket) reactor. The volume of acidogenic and methanogenic reactors is designed to 28.3 $m^3$ and 75.3 $m^3$. The two-phase anaerobic system represented 60-82% of COD removal efficiency when the influent COD concentration was in the range of 7,150 to 16,270 mg/L after screening (average concentration is 10,280 mg/L). After steady-state, the effluent COD concentration in the methanogenic reactor showed 2,740 $\pm$ 330 mg/L by representing average COD removal efficiency was 71.4 $\pm$ 8.1% when the operating temperature was in the range of 19-32$^{\circ}C$. The effluent SCOD concentration was in the range of 2,000-3,000 mg/L at the steady state while the volatile fatty concentration was not detected in the effluent. Meanwhile, the COD removal efficiency in the acidogenic reactor showed less than 5%. The acidogenic reactor played key roles to reduce a shock-loading when periodic shock loading was applied and to acidify influent organics. Due to the high concentration of alkalinity and high pH in the effluent of the methanogenic reactor, over 80% of methane in the biogas was produced consistently. More than 70 % of methane was recovered from theoretical methane production of TCOD removed in this research. The produced gas can be directly used as a heat source to increase the reactor temperature.

  • PDF

저품위 석탄의 원지반에서의 생물학적 메탄가스 생산에 관한 기초연구 (Basic Study on the in-situ Biogenic Methane Generation from Low Grade Coal Bed)

  • 왕페이;전지영;임학상;윤석표
    • 유기물자원화
    • /
    • 제23권4호
    • /
    • pp.11-20
    • /
    • 2015
  • 원지반에서의 저품위 석탄층의 생물학적 메탄 생산을 위한 기초연구를 수행하였다. 인도네시아산 갈탄을 시료로 이용하였으며, 조건을 달리하여 BMP(Biochemical Methane Potential) 실험을 수행하였다. 갈탄에 영양물질과 혐기성 슬러지만 제공한 경우, 온도(23, $30^{\circ}C$)나 석탄의 입자크기는 메탄가스 생산에 영향을 주지 않았다. 이는 가용한 용해성 유기물질이 낮기 때문이다. 외부탄소원으로 볏짚을 갈탄에 첨가한 후 BMP 실험을 수행하였으며, 60일간의 BMP 실험 후 볏짚 첨가에 의한 메탄가스 발생량은 94.4~110.4 mL/g VS이었다. BMP 실험 후 갈탄의 발열량은 볏짚 첨가량이 증가할수록 감소하는 경향을 보였다. 이는 볏짚의 혐기성 분해와 함께 갈탄의 분해가 이루어졌음을 의미한다. 따라서 원지반에서의 저품위 석탄층의 생물학적 메탄 생산의 초기 운전 시에 볏짚을 탄소원으로 사용할 수 있다.