• Title/Summary/Keyword: biofouling control

Search Result 35, Processing Time 0.049 seconds

The Study of Biofouling Control and Cause Material in Hybrid Process of Pure Oxygen and Submerged Membrane Bio-reactor (순산소 고율포기시스템 및 침지식 MBR융합공정에서 Biofouling 제어 및 원인물질 규명에 관한 연구)

  • Lee, Sang-Min;Kim, Mi-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.44-53
    • /
    • 2011
  • Membrane bio-reactor (MBR) has several advantages over the conventional activated sludge process, including a high biomass, low sludge production, and better permeate quality. Therefore, the MBR have gained popularity for municipal and industrial wastewater treatment. However the MBR usually were used for sewage and low streng th wastewater treatment because of membrane fouling problem and limitation of oxygen transfer into biomass. In this study, the hybrid process combining MBR and pure oxygen was tested for high strength organic wastewater treatment in the COD loading range from 2 to $10kgCOD/m^3{\cdot}day$. The hybrid process, membrane coupled pure oxygen high compact reactor (MPHCR), had been operated for one year and operation parameters, the effect of COD loading, MLSS concentration and the location of membrane module were studied for membrane fouling characteristic. Also membrane resistance test and the component of foulant was analyzed to investigate what is specific foulant in the MBR.

Treatment of Secondary Municipal Wastewater by Submerged Hollow Fiber MF Membranes for Water Reuse (침지형 MF 중공사막을 이용한 하수 2차 처리수의 재이용 연구)

  • Hyun, Seunghoon;Kim, Eung Do;Hong, Seungkwan;Ahn, Wonyoung;Yim, Seongkeun;Kim, Geontae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.47-52
    • /
    • 2005
  • This study was conducted to evaluate the performance of submerged hollow fiber MF processes to treat secondary wastewater for water reuse. Specifically, membrane productivity and filtrate water quality were investigated under various operating conditions (i.e. flux, recovery, and backwash rate) at pilot-scale. Membrane fouling became more severe with increasing flux and recovery, suggesting that low flux operation (< 25 LMH) was desirable. At high flux operating(> 37.5 LMH), increasing backwash rate showed only limited success. The biofouling, quantified by PEPA and BFHPC, was also significant in wastewater reclamation, and biogrowth control by chlorine, were necessary to improve membrane productivity. Filtrate water qualities are in good compliance with water reuse regulations regardless of operating conditions (flux, recovery and backwash rate). Particle (e.g. turbidity) removal ranged from 89 to 98%, while only 11 to 21% of organics (e.g. NPDOC) were removed by MF membrane. Only small improvement in biostability (e.g. AOC) was achieved by MF system, and thus, without post disinfection, significant microorganisms might be present in the filtrate due to regrowth. Lastly, in order to further investigate pathogen removal, controlled microbial challenge tests were performed by monitoring Giardia, Cryptosporidium, bacteria and virus, and showed relatively good microbial removal.

Effects of Quorum Quenching on the Microbial Community of Biofilm in an Anoxic/Oxic MBR for Wastewater Treatment

  • Jo, Sung Jun;Kwon, Hyeokpil;Jeong, So-Yeon;Lee, Sang Hyun;Oh, Hyun-Suk;Yi, Taewoo;Lee, Chung-Hak;Kim, Tae Gwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1593-1604
    • /
    • 2016
  • Recently, bacterial quorum quenching (QQ) has been proven to have potential as an innovative approach for biofouling control in membrane bioreactors (MBRs) for advanced wastewater treatment. Although information regarding the microbial community is crucial for the development of QQ strategies, little information exists on the microbial ecology in QQ-MBRs. In this study, the microbial communities of biofilm were investigated in relation to the effect of QQ on anoxic/oxic MBRs. Two laboratory-scale MBRs were operated with and without QQ-beads (QQ-bacteria entrapped in beads). The transmembrane pressure increase in the QQ-MBRs was delayed by approximately 100-110% compared with conventional- and vacant-MBRs (beads without QQ-bacteria) at 45 kPa. In terms of the microbial community, QQ gradually favored the development of a diverse and even community. QQ had an effect on both the bacterial composition and change rate of the bacterial composition. Proteobacteria and Bacteroidetes were the most dominant phyla in the biofilm, and the average relative composition of Proteobacteria was low in the QQ-MBR. Thiothrix sp. was the dominant bacterium in the biofilm. The relative composition of Thiothrix sp. was low in the QQ-MBR. These findings provide useful information that can inform the development of a new QQ strategy.

Enhancing the Physical Properties and Lifespan of Bacterial Quorum Quenching Media through Combination of Ionic Cross-Linking and Dehydration

  • Lee, Sang Hyun;Lee, Seonki;Lee, Kibaek;Nahm, Chang Hyun;Jo, Sung-Jun;Lee, Jaewoo;Choo, Kwang-Ho;Lee, Jung-Kee;Lee, Chung-Hak;Park, Pyung-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.552-560
    • /
    • 2017
  • Quorum quenching (QQ) bacteria entrapped in a polymeric composite hydrogel (QQ medium) have been successfully applied in membrane bioreactors (MBRs) for effective biofouling control. However, in order to bring QQ technology closer to practice, the physical strength and lifetime of QQ media should be improved. In this study, enforcement of physical strength, as well as an extension of the lifetime of a previously reported QQ bacteria entrapping hollow cylinder (QQ-HC), was sought by adding a dehydration procedure following the cross-linking of the polymeric hydrogel by inorganic compounds like $Ca^{2+}$ and boric acid. Such prepared medium demonstrated enhanced physical strength possibly through an increased degree of physical cross-linking. As a result, a longer lifetime of QQ-HCs was confirmed, which led to improved biofouling mitigation performance of QQ-HC in an MBR. Furthermore, QQ-HCs stored under dehydrated condition showed higher QQ activity when the storage time lasted more than 90 days owing to enhanced cell viability. In addition, the dormant QQ activity after the dehydration step could be easily restored through reactivation with real wastewater, and the reduced weight of the dehydrated media is expected to make handling and transportation of QQ media highly convenient and economical in practice.

Surface Characteristics of Fouling Resistant Low-Pressure RO Membranes (상업용 내오염성 저압 RO막의 표면 특성 분석)

  • Hong, Seungkwan;Taylor, James;Norberg, David;Lee, Jinwoo;Park, Chanhyuk;Kim, Hana
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • In this study, five commercially available fouling resistant low-pressure RO membranes were investigated for the treatment of seasonally brackish surface water with high organic content (${\approx}24mg/L$). The membranes investigated are LFC-1 (Hydranautics), X20 (Trisep), BW30FR1 (FilmTec), SG (Osmonics), and BE-FR (Saehan). The results of surface characterization revealed that each of these membranes has one or two unique surface characteristics to minimize the adherence of the fouling materials to the membrane. Specifically, the LFC1 membrane features a neutral or low negative surface to minimize electrostatic interactions with charged foulants. The X20, on the other hand, shows a highly negatively charged surface, and thus, is expected to perform well with feed waters containing negatively charged organics and colloids. The BW30FR1 exhibits a relatively neutral and hydrophilic surface, which could be beneficial for lessening organic and/or biofouling. The SG membrane has a smooth surface that makes it quite resistant to fouling, particularly for colloidal deposition. Lastly, BE-FR membrane demonstrated a medium surface charge and a slightly higher hydrophobicity. In the pilot study, all of the four membranes experienced a gradual increase in MTC (water mass transfer coefficient or specific flux) over time, indicating no fouling occurred during the pilot study. The deterioration of permeate water quality such as TDS was also observed over time, suggesting that the integrity of the membranes was compromised by the monochloramine used for biofouling control.

Sole and Combined Usage of Ultra-sonication and Hydrogen Peroxide as Mitigation Techniques of Bio-fouling

  • Haque, Md. Niamul;Kwon, Sung-hyun
    • Journal of Environmental Science International
    • /
    • v.25 no.10
    • /
    • pp.1397-1405
    • /
    • 2016
  • Mussels are stubborn organism attached to solid substrate by byssus threads and caused operational problems in utility of power generating stations. Sole and combined usage of ultrasonic (28 kHz- and 42 kHz- frequencies) and hydrogen peroxide ($H_2O_2$) has studied for control of blue mussel larvae and adult stage in seawater condition. A theoretical wo rking model using disinfection (Chick and Watson type) approaches is presented based on helpful results of experiments. This study also demonstrate that the combined treatment (ultra-sonication with $H_2O_2$) is overall highly efficient than individual treatment would, but on the basis of exposure time, the ultra-sonication was the most efficient among them. Therefore the development of sole and combined technique might be effective practical mitigation strategy against mussel attachment for water handling facilities.

Antagonism of Bacterial Extracellular Metabolites to Freshwater-Fouling Invertebrate Zebra Mussels, Dreissena polymopha

  • Gu, Ji-Dong;Ralph Mitchell
    • Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.133-138
    • /
    • 2001
  • We investigated the antagonism of indigenous bacteria isolated from stressed mussels and their extracellular metabolites on the adult zebra mussel, Dreissena polymorpha. Selective bacterial isolates including Aeromonas media, A. salmonicida, A. veronii, and Shewanella putrefaciens, showed strong lethality against adult mussels and 100% mortality was observed within 5 days of incubation. Bacterial metabolites, fractionated and concentrated from stationary-phase culture supernatants of these bacterial isolates, displayed varying degrees of antagonistic effects on zebra mussels. Among the three size fractions examined, <5, 5-10, and >10 kDa, the mast lethal fraction seems to be >10 kDa for three of the four isolates tested. Further chemical analyses of these size fractions revealed that the predominant constituents were polysaccharides and proteins. No 2-keto-3-deoxyoctanoic acid (2-KDO), deoxyribonucleic acids (DNA) or uranic acid were detectable. Extraction of supernatants of two antagonistic isolates with polar solvent suggested that polar molecules are present in the active fraction. Our data suggest that extracellular metabolites produced by antagonistic bacteria are also involved in disease development in zebra mussels and elucidation of the mechanisms involved may offer a novel strategy for control of biofouling invertebrates.

  • PDF

Performance and microbial community analysis for fouling characteristics in a full-scale flat sheet membrane bioreactor (실규모 flat sheet MBR 운영 효율과 Fouling 특성을 위한 미생물 군집 평가)

  • Seungwon Kim;Jeongdong Choi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.325-334
    • /
    • 2023
  • Membrane bioreactor (MBR) provides the benefits on high effluent quality and construction cost without the secondary clarification. Despite of these advantages, fouling, which clogs the pore in membrane modules, affects the membrane life span and effluent quality. Studies on the laboratory scale MBR were focused on the control of particulate fouling, organic fouling and inorganic fouling. However, less studies were focused on the control of biofouling and microbial aspect of membrane. In the full scale operation, most MBR produces high effluent quality to meet the national permit of discharge regulation. In this study, the performance and microbial community analysis were investigated in two MBRs. As the results, the performance of organic removal, nitrogen removal, and phosphorus removal was similar both MBRs. Microbial community analysis, however, showed that Azonexus sp. and Propionivibrio sp. contributed to indirect fouling to cause the chemical cleaning in the DX MBR.

Delayed Mode Quality Control of Argo Data and Its Verification in the Pacific Ocean (태평양 Argo 자료의 지연모드 품질관리 및 검증연구)

  • Yang, Joon-Yong;Kang, Seong-Yun;Go, Woo-Jin;Suh, Young-Sang;Seo, Jang-Won;Suk, Moon-Sik
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1353-1361
    • /
    • 2008
  • Quality control of Argo(Array for Real-time Geostrophic Oceanography) data is crucial by reason that salinity measurements are liable to experience some drift and offset due to biofouling, contamination of sensor and wash-out of biocide. The automated Argo real-time quality control has a limit of sorting data quality, so that WJO program is adopted as standardized method of Argo delayed mode quality control (DMQc) in the world that is a precise quality control method. We conducted DMQC on pressure, temperature and salinity measured by Argo floats in the Pacific Ocean including expert evaluation. Particularly, salinity data were corrected using WJO program. 4 salinity profiles of Argo delayed mode were compared with nearby in situ CTD data and other Argo data in deep layer where oceanographic conditions are stable in time and space. The differences of both salinities were lower than target accuracy of Argo. As compared with the difference of salinities before DMQC, those after DMQC decreased by 60-80 percent. Quality of delayed mode salinity data seemed to be improved correcting salinity data suggested by WJO program.

Application of acyl-homoserine lactones for regulating biofilm characteristics on PAO1 and multi-strains in membrane bioreactor

  • Wonjung, Song;Chehyeun, Kim;Jiwon, Han;Jihoon, Lee;Zikang, Jiang;Jihyang, Kweon
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.35-45
    • /
    • 2023
  • Biofilms significantly affect the performance of wastewater treatment processes in which biodegradability of numerous microorganisms are actively involved, and various technologies have been applied to secure microbial biofilms. Understanding changes in biofilm characteristics by regulating expression of signaling molecules is important to control and regulate biofilms in membrane bioreactor, i.e., biofouling. This study investigated effects of addition of acyl-homoserine lactones (AHL) as a controllable factor for the microbial signaling system on biofilm formation of Pseudomonas aeruginosa PAO1 and multiple strains in membrane bioreactor. The addition of three AHL, i.e., C4-, C6-, and C8-HSL, at a concentration of 200 ㎍/L, enhanced the formation of the PAO1 biofilm and the degree of increases in the biofilm formation of PAO1 were 70.2%, 76.6%, and 72.9%, respectively. The improvement of biofilm formation of individual strains by C4-HSL was an average of 68%, and the microbial consortia increased by approximately 52.1% in the presence of 200 ㎍/L C4-HSL. CLSM images showed that more bacterial cells were present on the membrane surface after the AHL application. In the COMSTAT results, biomass and thickness were increased up to 2.2 times (PAO1) and 1.6 times (multi-strains) by C4-HSL. This study clearly showed that biofilm formation was increased by the application of AHL to individual strain groups, including PAO1 and microbial consortia, and significant increases were observed when 50 or 100 ㎍/L AHL was administered. This suggests that AHL application can improve the biofilm formation of microorganisms, which could yield an enhancement in efficiency of biofilm control, such as in various biofilm reactors including membrane bioreactor and bioflocculent systems in water/wastewater treatment processes.