• 제목/요약/키워드: biofouling control

검색결과 35건 처리시간 0.021초

고전압 임펄스를 적용한 막분리 공정에서의 생물막 오염 제어에 관한 연구 (A Study on the Biofouling Control in Membrane Processes Using High Voltage Impulse)

  • 이주훈;김준영;이진우;이준호;장인성
    • 조명전기설비학회논문지
    • /
    • 제25권10호
    • /
    • pp.67-75
    • /
    • 2011
  • Although membrane technologies are widely applied to the water and wastewater treatment processes, strategy for the control of membrane biofouling is strongly required. In this study, a possibility of control of membrane biofouling using HVI(High Voltage Impulse) was verified based on the inactivation of microorganisms by the HVI. The HVI system was consisted of power supply, voltage amplifier, impulse generator and disinfection chamber and the model microorganism was E. coli. When 15[kV/cm] of electric fields was applied to the E. coli solution, inactivation of the microorganism was found. A possibility of the control of membrane biofouling using HVI was verified with experiments of membrane filtration with and without exposure of the HVI to biomass solution. Another membrane filtration experiments with the contaminated membranes by E. coli solution were carried out and indicate that the HVI could be used as an alternative method for membrane biofouling control. A series of simulation of the electric fields between electrodes and microorganisms was carried out for the visualization of the disinfection that showed where the electric fields are formed.

Reduction of biofouling using vanillin as a quorum sensing inhibitory agent in membrane bioreactors for wastewater treatment

  • Nam, AnNa;Kweon, JiHyang;Ryu, JunHee;Lade, Harshad;Lee, ChungHak
    • Membrane and Water Treatment
    • /
    • 제6권3호
    • /
    • pp.189-203
    • /
    • 2015
  • Membrane biofouling impedes wide application of membrane bioreactor (MBR) for wastewater treatment. Recently, quorum sensing (QS) mechanisms are accounted for one of major mechanisms in biofouling of MBRs. In this study, vanillin was applied to investigate reduction of biofouling in MBRs. MBR sludge was analyzed to contain QS signal molecules by cross-feeding biosensor assay and HPLC. In addition, the inhibitory activity of vanillin against bacterial quorum sensing was verified using an indicator strain CV026. The vanillin doses greater than 125 mg/L to 100 mL of MBR sludge showed 25% reduction of biofilm formed on the membrane surfaces. Two MBRs, i.e., a typical MBR as a control and an MBR with vanillin, were operated. The TMP increases of the control MBR were more rapid compared to those of the MBR with the vanillin dose of 250 mg/L. The treatment efficiencies of the two MBRs on organic removal and MLSS were maintained relatively constant. Extracellular polymeric substance concentrations measured at the end of the MBR operation were 173 mg/g biocake for the control MBR and 119 mg/g biocake for the MBR with vanillin. Vanillin shows great potential as an anti-biofouling agent for MBRs without any interference on microbial activity for wastewater treatment.

Quorum quenching for effective control of biofouling in membrane bioreactor: A comprehensive review of approaches, applications, and challenges

  • Kose-Mutlu, Borte;Ergon-Can, Tulay;Koyuncu, Ismail;Lee, Chung-Hak
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.543-558
    • /
    • 2019
  • In comparison to alternative advanced wastewater treatment technologies, the main problem associated with membrane bioreactor (MBR) technology, which has become prominent in recent years, is biofouling. Within these systems, biofouling is typically the result of a biofilm layer resulting from bacterial gathering. One biological system that can be employed to interrupt the process of bacterial gathering is called 'Quorum Quenching (QQ)'. Existing QQ applications can be classified using three main types: 1) bacterial/whole-cell applications, 2) direct enzyme applications, and 3) natural sourced compounds. The most common and widely recognized applications for membrane fouling control during MBR operation are bacterial and direct enzyme applications. The purpose of this review was to identify and assess biofilm formation mechanism and results, the suggestion of the QQ concept and its potential to control biofilm formation, and the means by which these QQ applications can be applied within the MBR and present QQ MBR studies.

정족수 제어효소와 biofouling 제어 (Quorum Quenching Enzymes and Biofouling Control)

  • 전용재;정원겸;허혜숙
    • 생명과학회지
    • /
    • 제26권12호
    • /
    • pp.1487-1497
    • /
    • 2016
  • 정족수 인식 체계라 불리는 세균들의 세포간 의사교환 전략은 다양한 유전자의 발현조절을 통해, 생물막 성숙, 세포 외 고분자물질의 생산, 병원성 발현 및 항생제 생산 등과 같은 다양한 표현형을 조절하는 세균의 다세포성 행동 양식을 제어한다. 다수의 연구에 의하면 많은 종류의 그람 (Gram)음성 세균들이 정족수 인식체계에 필요한 신호전달 물질로 acyl-homoserine lactones (AHLs)를 사용하고 있으며, 이들은 생물막 형성에 중요한 인자로 작용함을 시사하였다. 이러한 정족수 인식체계에 의한 생물막의 형성은 물이 존재하는 모든 표면환경에서 불필요한 바오매스 축적이라는 심각한 기술적, 경제적 문제를 초래하고 있다. 최근 정족수 인체 체계를 교란하는 다수의 물질들이 다양한 미생물로부터 발견되어, 그들의 정족수 인식 체계와 관련된 주요 기능과 기작들이 밝혀지고 있다. 이러한 정족수 제어 물질들은 최근 다양한 산업에서 발생하는 생물 부착현상들을 제어할 수 있는, 환경 친화적이며 세균의 항생제 다재 내성을 완화 시킬 수 있는 새로운 방법으로 대두되고 있다. 따라서 본 논문은 세균의 정족수 인식 체계와 관련된 최근 정보, 정족수 인식 신호를 제어할 수 있는 정족수 제어 효소와 이러한 기술을 이용한 생물 부착 저해 방법 등을 논의하고자 한다.

Adsorption of phosphate and mitigation of biofouling using lanthanum-doped quorum quenching beads in MBR

  • Hyeonwoo Choi;Youjung Jang;Jaeyoung Choi;Hyeonsoo Choi;Heekyong Oh;Shinho Chung
    • Membrane and Water Treatment
    • /
    • 제15권2호
    • /
    • pp.51-57
    • /
    • 2024
  • The removal of phosphorus, especially phosphate-form phosphorus, is necessary in wastewater treatment. Biofouling induced by the quorum sensing mechanism is also a major problem in membrane bioreactor (MBR), which reduces membrane flux. This study introduces lanthanum-doped quorum quenching (QQ) beads into MBR, confirming their inhibitory effect on biofouling due to Rhodococcus sp. BH4 and their capacity for phosphorus removal through lanthanum adsorption. A batch test was conducted to access the phosphate adsorption of lanthanum-QQ (La-QQ) beads and lab-scale MBR to verify the effect of inhibition. The study aimed to identify distinctions among the MBR, QQ MBR, and La-QQ MBR. In the batch test, the phosphate removal rate increased as the volume of beads increased, while the unit volume removal rate of phosphate decreased. In the lab-scale MBR, the phosphate removal rates were below 20% in the control MBR and QQ MBR, whereas the La-QQ MBR achieved a phosphate removal rate of 74%. There was not much difference between the ammonia and total organic carbon (TOC) removal rates. Regarding the change in transmembrane pressure(TMP), 3.7 days were taken for the control MBR to reach critical pressure. In contrast, the QQ-MBR took 9.8 days, and the La-QQ MBR took 6.1 days, which confirms the delay in biofouling. It is expected that La-QQ can be used within MBR to design a more stable MBR process that regulates biofouling and enhances phosphate removal.

Design of Quorum Quenching Microbial Vessel to Enhance Cell Viability for Biofouling Control in Membrane Bioreactor

  • Cheong, Won-Suk;Kim, Sang-Ryoung;Oh, Hyun-Suk;Lee, Sang H.;Yeon, Kyung-Min;Lee, Chung-Hak;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권1호
    • /
    • pp.97-105
    • /
    • 2014
  • Quorum quenching (QQ) with a microbial vessel has recently been reported as an economically feasible biofouling control platform in a membrane bioreactor (MBR) for wastewater treatment. In this study, a quorum quenching MBR with a ceramic microbial vessel (CMV) was designed to overcome the extremely low F/M ratio inside a microbial vessel. The CMV was prepared with a monolithic ceramic microporous membrane and AHL-degrading QQ bacteria, Pseudomonas sp. 1A1. The "inner flow feeding mode" was introduced, under which fresh feed was supplied to the MBR only through the center lumen in the CMV. The inner flow feeding mode facilitated nutrient transport to QQ bacteria in the CMV and thus enabled relatively long-term maintenance of cell viability. The quorum quenching effect of the CMV on controlling membrane biofouling in the MBR was more pronounced with the inner flow feeding mode, which was identified by the slower increase in the transmembrane pressure as well as by the visual observation of a biocake that formed on the used membrane surface. In the QQ MBR with the CMV, the concentrations of extracellular polymeric substances were substantially decreased in the biocake on the membrane surface compared with those in the conventional MBR. The CMV also showed its potential with effective biofouling control over long-term operation of the QQ MBR.

Impact of quorum quenching bacteria on biofouling retardation in submerged membrane bioreactor (SMBR)

  • Pervez, Saimar;Khan, Sher Jamal;Waheed, Hira;Hashmi, Imran;Lee, Chung-Hak
    • Membrane and Water Treatment
    • /
    • 제9권4호
    • /
    • pp.279-284
    • /
    • 2018
  • Membrane biofouling is a critical operational problem that hinders the rapid commercialization of MBRs. Quorum quenching (QQ) has been investigated widely to control membrane biofouling and is accepted as a promising anti-fouling strategy. Various QQ strategies based on bacterial and enzymatic agents have been identified and applied successfully. Whereas, this study aimed to compare indigenously isolated QQ strain i.e., Enterobacter cloaca with well reported Rhodococcus sp. BH4. Both bacterial species were immobilized in polymeric beads and introduced to two different MBRs keeping the overall beads to volume ratio as 1%. Efficiencies of these strains were monitored in terms of prolonging the membrane filtration cycle of MBR, release of extra-cellular polymeric substances, membrane resistivity measurements and mineralization of signal molecules and permeate quality. Indigenous strain (Enterobacter cloaca) was added to $QQ-MBR_E$ while Rhodococcus sp. BH4 was introduced to $QQ-MBR_R$. QQ bacterial embedded beads showed enhanced filtration cycles up to 1.4 and 2.3 times for $QQ-MBR_E$ and $QQ-MBR_R$ respectively as compared to control MBR (C-MBR). Soluble EPS concentration of 52 mg/L was observed in C-MBR while significantly lower EPS concentration of 20 and 10 mg/L was witnessed in $QQ-MBR_E$ and $QQ-MBR_R$, respectively. Therefore, substantial reduction in biofouling showed the effectiveness of indigenous strain.

세라믹 다공체 표면에 발생하는 해양 생물 오손 억제에 관한 연구 (Study on the control of marine biofouling developed on the surface of porous ceramics)

  • 강지민;강승구;김유택
    • 한국결정성장학회지
    • /
    • 제25권5호
    • /
    • pp.218-224
    • /
    • 2015
  • 최근 세라믹 다공체를 이용하여 적조 생물을 여과, 제거하려는 연구가 시도되고 있다. 하지만 해양 환경에서 1개월 이상이 경과하면 다공체 표면에 해양 생물 오손(biofouling)이 발생하여 기능이 저하되는 문제가 나타난다. 본 논문에서는 세라믹 다공체의 특성 변화 또는 표면 개질을 통하여 해양 생물 오손을 억제하는 방법에 대하여 연구하였다. 6 종류의 세라믹 다공체를 시험한 결과, 기공율과 흡수율이 낮을수록 생물 오손량이 낮게 나타났다. 또한 다공체 표면에 실리카 입자를 결합시켜 표면 거칠기를 증가시키면, 따개비 등의 대형 해양 생물로 인한 오손량을 감소시킬 수 있었다. 한편 세라믹 다공체 표면에 유리분말을 융착 코팅시키면 오히려 생물 오손량이 증가하였는데, 이는 유리에서 용출되어 나오는 무기질 성분 이온들이 미생물의 생육을 촉진했기 때문이다. 본 연구로부터 세라믹 다공체의 물리적 성질 및 표면 거칠기를 제어하면 위험 물질을 사용하지 않고도 친환경적으로 해양 생물 오손량을 줄일 수 있음을 확인하였으며, 따라서 본 결과를 향후 해양 구조물 등에 적용할 수 있을 것으로 기대된다.

국내입항 국제운항선의 선체부착생물 관리에 대한 연구 (Study on the Biofouling Management of International Ships Entering South Korea)

  • 박정경;허철회;김한필;조유경
    • 해양환경안전학회지
    • /
    • 제28권1호
    • /
    • pp.10-18
    • /
    • 2022
  • 선박을 통한 세계교역 증가에 따라 침입외래종(Invasive Alien Species, IAS)로 인한 해양생태계파괴 및 사회경제적 피해가 지속적으로 증가하고 있다. 특히 선체표면과 틈새구역(Niche Area)에 부착된 해양생물의 이동은 외래종침입 문제뿐만 아니라 선박의 마찰저항을 증가시켜 운항효율감소 및 온실가스배출 증가를 유발한다. 국제해사기구(IMO)는 최근 선체부착생물 통제 및 관리에 대한 지침 개정작업에 착수하였고 뉴질랜드와 미국 캘리포니아는 이미 자국법으로 선체부착생물 관리를 규제하고 있다. 본 논문에서는 국내에 입항하는 국제운항선 5척을 대상으로 선체부착생물 관리현황과 생물부착현황을 조사하였고, 생물부착종과 피도(Coverage)를 분석하여 생물부착단계 등급(Level of Fouling, LoF rank)을 평가하였다. 모든 선박에서 대형부착생물(Macrofouling)이 관찰되었고 특히 선수 스러스터(Bow thruster), 빌지킬(Bilge keels) 및 해수 흡입구 격자(Sea-chest gratings)와 같은 틈새구역의 대형개체(Macro organisms) 부착이 심각한 수준으로 나타났다. 본 연구에서는 국내 선체부착생물 관리방안을 제시하고, 실선대상 생물부착단계등급 적용 및 검사(Inspection) 방법 개선방안을 제안하고자 하였다.

Assessment of the effect of biofilm on the ship hydrodynamic performance by performance prediction method

  • Farkas, Andrea;Degiuli, Nastia;Martic, Ivana
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.102-114
    • /
    • 2021
  • Biofouling represents an important problem in the shipping industry since it causes the increase in surface roughness. The most of ships in the current world fleet do not have good coating condition which represents an important problem due to strict rules regarding ship energy efficiency. Therefore, the importance of the control and management of the hull and propeller fouling is highlighted by the International Maritime Organization and the maintenance schedule optimization became valuable energy saving measure. For adequate implementation of this measure, the accurate prediction of the effects of biofouling on the hydrodynamic characteristics is required. Although computational fluid dynamics approach, based on the modified wall function approach, has imposed itself as one of the most promising tools for this prediction, it requires significant computational time. However, during the maintenance schedule optimization, it is important to rapidly predict the effect of biofouling on the ship hydrodynamic performance. In this paper, the effect of biofilm on the ship hydrodynamic performance is studied using the proposed performance prediction method for three merchant ships. The applicability of this method in the assessment of the effect of biofilm on the ship hydrodynamic performance is demonstrated by comparison of the obtained results using the proposed performance prediction method and computational fluid dynamics approach. The comparison has shown that the highest relative deviation is lower than 4.2% for all propulsion characteristics, lower than 1.5% for propeller rotation rate and lower than 5.2% for delivered power. Thus, a practical tool for the estimation of the effect of biofouling with lower fouling severity on the ship hydrodynamic performance is developed.