• 제목/요약/키워드: biofouling

검색결과 94건 처리시간 0.031초

Isolation and Characterization of Biofouling Bacteria in Ultra-high Purity Water Used in the Semiconductor Manufacturing Process

  • Kim, In-Seop;Lee, Kye-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.554-558
    • /
    • 2000
  • Bacteria were isolated and identified from an advanced high-purity water system that supplies ultra-high purity water (UHPW) for 16-megabyte DRAM semiconductor manufacturing. Scanning electron microscopic and microbiological observations revealed that the primary source of the bacteria isolated from the UHPW was detached cells from biofilms developed on the pipe wall through which the UHPW, a man-made and extremely nutrient poor environment, was passing. About 63-65% of the bacteria isolated from the UHPW and the pipe wall were Gram-positive, whereas only 10% of the bacteria isolated from the feed water were Gram-positive. The of Gram-positive bacteria and seven genera of Gram-negative bacteria. Strains of the UHPW bacteria effectively adhered to and formed a biofilm on the surface of polyvinyl chloride (PVC) pipe.

  • PDF

화상 분석을 통한 선박 방오도료의 성능 평가 (Image Analysis Method for the Performance Evaluation of Marine Antifouling Coatings)

  • 박현;전호환;이인원
    • 한국가시화정보학회지
    • /
    • 제11권2호
    • /
    • pp.18-26
    • /
    • 2013
  • An accurate and reliable performance evaluation technique is indispensable for the development of marine antifouling coatings. The existing standard practice is however, based on the visual observation of biofouling settlement area, which is prone to the subjective judgment of the inspector. In spite of the above mentioned importance, a systematic and objective fouling evaluation technique has not yet been introduced. In this study, a novel quantitative antifouling performance evaluation method for marine antifouling paints is devised based on the image analysis of panel immersion test results. The present image analysis method is to quantify settlement area for each fouling category by distinctive color. The fouling categories are set as unfouled, biofilm, green algae, brown algae, calcareous animal and spongy animal with specific HSL (Hue, Saturation, Lightness) color ranges. In order to assess the effectiveness of the proposed method, static immersion tests for three antifouling coatings were undertaken for two years.

Bioinspired Nanoengineering of Multifunctional Superhydrophobic Surfaces

  • Choi, Chang-Hwan
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.102-133
    • /
    • 2015
  • Nature, such as plants, insects, and marine animals, uses micro/nano-textured surfaces in their components (e.g., leaves, wings, eyes, legs, and skins) for multiple purposes, such as water-repellency, anti-adhesiveness, and self-cleanness. Such multifunctional surface properties are attributed to three-dimensional surface structures with modulated surface wettability. Especially, hydrophobic surface structures create a composite interface with liquid by retaining air between the structures, minimizing the contact area with liquid. Such non-wetting surface property, so-called superhydrophobicity, can offer numerous application potentials, such as hydrodynamic drag reduction, anti-biofouling, anti-corrosion, anti-fogging, anti-frosting, and anti-icing. Over the last couple of decades, we have witnessed a significant advancement in the understanding of surface superhydrophobicity as well as the design, fabrication, and applications of superhydrophobic coatings/surfaces/materials. In this talk, the designs, fabrications, and applications of superhydrophobic surfaces for multifunctionalities will be presented, including hydrodynamic friction reduction, anti-biofouling, anti-corrosion, and anti-icing.

  • PDF

NH2Cl 사용으로 인한 RO 막의 성능 향상 (Effect of Feed Monochloramination on Performance of RO Membranes)

  • 홍승관
    • 상하수도학회지
    • /
    • 제19권3호
    • /
    • pp.312-317
    • /
    • 2005
  • The 15 month pilot study was performed to investigate the effect of pretreatment by monochloramine ($NH_2Cl$) on the performance of RO membranes made of cellulose acetate (CA) and polyamide (PA). Both RO membranes experienced severe biological fouling without any pretreatment during the treatment of highly organic surface water in Florida, USA. Feed monochloramination at 5 mg/L significantly minimized productivity loss by effective control of biofouling. The CA membrane did not show any structural damages by monochloramine, while the PA membrane suffered from a gradual loss of membrane integrity by chlorine oxidation, which was characterized as an increase in productivity and a decrease in selectivity. The degradation of PA membrane increased with increasing monochloramine dose.

Effect of the Shape and Size of Quorum-Quenching Media on Biofouling Control in Membrane Bioreactors for Wastewater TreatmentS

  • Lee, Seonki;Lee, Sang Hyun;Lee, Kibaek;Kwon, Hyeokpil;Nahm, Chang Hyun;Lee, Chung-Hak;Park, Pyung-Kyu;Choo, Kwang-Ho;Lee, Jung-Kee;Oh, Hyun-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권10호
    • /
    • pp.1746-1754
    • /
    • 2016
  • Recently, spherical beads entrapping quorum quenching (QQ) bacteria have been reported as effective moving QQ-media for biofouling control in MBRs for wastewater treatment owing to their combined effects of biological (i.e., quorum quenching) and physical washing. Taking into account both the mass transfer of signal molecules through the QQ-medium and collision efficiencies of the QQ-medium against the filtration membranes in a bioreactor, a cylindrical medium (QQ-cylinder) was developed as a new shape of moving QQ-medium. The QQ-cylinders were compared with previous QQ-beads in terms of the QQ activity and the physical washing effect under identical loading volumes of each medium in batch tests. It was found that the QQ activity of a QQ-medium was highly dependent on its specific surface area, regardless of the shape of the medium. In contrast, the physical washing effect of a QQ-medium was greatly affected by its geometric structure. The enhanced anti-biofouling property of the QQ-cylinders relative to QQ-beads was confirmed in a continuous laboratory-scale MBR with a flat-sheet membrane module.

선박 프로펠러 표면의 생물부착물이 프로펠러 유체역학적 성능에 미치는 영향에 관한 연구 (A Study on the Hydrodynamic Effect of Biofouling on Marine Propeller)

  • 서광철;;구본국
    • 해양환경안전학회지
    • /
    • 제22권1호
    • /
    • pp.123-128
    • /
    • 2016
  • 프로펠러 표면의 생물 부착이 프로펠러 성능에 상당한 영향을 미치지만 프로펠러 표면 거칠기와 관련된 연구는 상대적으로 선체 표면에 비하여 많지 않다. 본 연구에서는 Schultz(2007)가 발표한 Granville's similarity-law scaling 절차에 기초하여 실선 7 m 크기의 탱커 프로펠러에 표면 부착물 상태가 서로 다른 3가지 경우를 고려하여 프로펠러 단독 효율의 감소의 변화를 Lifting surface code를 사용하여 수치적 계산을 수행하여 효율을 비교하였다. 본 논문에서의 결과는 표면 거칠기가 큰 석회질 부착물($k_s=0.001$)은 선박 설계 속도(J=0.5)에서 최대 15 %의 프로펠러 효율 감소를 보였음을 확인하였으며 이는 선박 운항 시 생물 부착에 의한 효율 감소에 대한 평가가 고려되어야 한다는 점을 나타내고 있다.

황동 표면의 생물 부착 억제를 위한 접착성 폴리에틸렌글라이콜 코팅 (Adhesive Polyethylene Glycol Coatings for Low Biofouling Copper-Zinc Alloy Substrates)

  • 이상우;신현호;권석준;류지현
    • 접착 및 계면
    • /
    • 제24권3호
    • /
    • pp.105-111
    • /
    • 2023
  • 최근 귀금속 산업을 포함한 다양한 산업 분야에 있어, 생물 부착 억제를 위한 코팅 방법에 대한 관심이 증가하고 있다. 특히, 패션 주얼리와 같이 피부에 밀착하여 접촉하는 악세사리나 귀걸이, 그리고 피어싱의 경우, 금속 표면의 오염으로 인하여 접촉 부위를 자극하거나 이상 반응을 유도할 수 있다. 이에 본 연구에서는 폴리에틸렌글라이콜 양 말단에 홍합의 접착 물질로 보고된 카테콜기를 도입하여 접착성 폴리에틸렌글라이콜을 합성하고, 이를 구리와 아연의 합금인 황동 표면에 코팅하여 생물 부착 억제 효과를 관찰하였다. 접착성 폴리에틸렌글라이콜이 코팅된 황동 표면은 우수한 세포 생존율을 나타낼 뿐 아니라, 단백질이나 세포의 부착을 억제하는 효과를 나타냈다. 그러므로 귀금속 산업 분야에 있어서 접착성 폴리에틸렌글라이콜을 이용한 다양한 응용이 기대된다.

Biofouling이 일어난 역삼투막에서 분리한 쿼럼 저해 세균의 특성 (Characterization of Quorum-Quenching Bacteria Isolated from Biofouled Membrane Used in Reverse Osmosis Process)

  • 문수영;;최성찬;오영숙
    • 미생물학회지
    • /
    • 제50권2호
    • /
    • pp.128-136
    • /
    • 2014
  • Acyl homoserine lactone (AHL) 분해효소인 lactonase는 높은 기질 특이성을 지니기 때문에 경제적이고 효율적인 쿼럼 저해 기술로 이용될 가능성을 지니고 있다. 본 연구에서는 Chromobacterium violaceum CV026과 Agrobacterium tumefaciens NTL4를 바이오센서로 이용하여 biofouling이 일어난 역삼투막 시료로부터 쿼럼 센싱과 관련된 생물막 형성을 억제하는 6종의 균주를 분리 연구하였다. 분리된 균주는 모두 Bacillus 속으로 동정되었으며, AHL 분자의 acyl 사슬 길이나 치환 종류에 상관 없이 쿼럼 저해활성을 보여주었다. 균주들은 Pseudomonas aeruginosa PAO1에 의한 생물막 형성을 46.7-58.3% 정도 감소시켰으며 이 때 저해물질은 열처리에 민감한 특성을 보여주었다. 분리 균주 중 RO1S-5를 이용하여 N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12 AHL)과 반응시킨 결과, 상응하는 acyl homoserine (3-oxo-C12-HS)이 생성되는 것을 LC-MS로 확인하여 쿼럼 저해가 lactonase 활성에 의한 것임을 규명하였다. AHL 물질에 대한 높은 특이성 등을 감안할 때 분리 균주 RO1S-5는 생물막 형성과 관련된 질병이나 산업공정 중 발생하는 biofouling을 해결하는데 유용하게 쓰일 수 있을 것으로 기대된다.

부유형 해양 광생물반응기의 선택적 투과막의 술폰화 반응을 통한 Biofouling 억제 및 미세조류 생산성 향상 (Improving Microalgal Biomass Productivity and Preventing Biofouling in Floating Marine Photobioreactors via Sulfonation of Selectively Permeable Membranes)

  • 김광민;이윤우;김지훈;박한울;정인재;박재훈;임상민;이철균
    • 한국해양바이오학회지
    • /
    • 제9권1호
    • /
    • pp.14-21
    • /
    • 2017
  • The purpose of this study was to inhibit biofouling on a selectively permeable membrane (SPM) and increase biomass productivity in marine photobioreactors (PBRs) for microalgal cultivation by chemical treatment. Surfaces of a SPM, composed of polyethylene terephthalate (PET), was sulfonated to decrease hydrophobicity through attaching negatively charged sulfonic groups. Reaction time of sulfonation was varied from 0 min to 60 min. As the reaction time increased, the water contact angle value of SPM surface was decreased from $75.5^{\circ}$ to $44.5^{\circ}$, indicating decrease of surface hydrophobicity. Furthermore, the water permeability of sulfonated SPM was increased from $5.42mL/m^2/s$ to $10.58mL/m^2/s$, which reflects higher nutrients transfer rates through the membranes, due to decreased hydrophobicity. When cultivating Tetraselmis sp. using 100-mL floating PBRs with sulfonated SPMs, biomass productivity was improved by 34% compared with the control group (non-reacted SPMs). In addition, scanning electron microscopic observation of SPMs used for cultivation clearly revealed lower degree of cell attachment on the sulfonated SPMs. These results suggest that sulfornation of a PET SPM could improve microalgal biomass productivity by increasing nutrients transfer rates and inhibiting biofouling by algal cells.