• Title/Summary/Keyword: biofilms

Search Result 258, Processing Time 0.033 seconds

Effect of Sigma Factor ${\sigma}^{B}$ on Biofilm Formation of Listeria monocytogenes in High Osmotic and Low Temperature Conditions (고삼투압 및 저온 조건에서 sigma factor ${\sigma}^{B}$가 Listeria monocytogenes biofilm 생성에 미치는 영향)

  • Park, Sang-Gyu;Park, Shin
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.456-460
    • /
    • 2004
  • Effects of sigma factor (${\sigma}^{B}$) on biofilm formation in Listeria monocytogenes 10403S and ${\sigma}^{B}-deficient$ sigB null mutant were studied under high osmotic and low temperature conditions. In brain heart infusion (BHI) medium containing 6% NaCl, wild type 10403S and ${\sigma}^{B}-deficient$sigB null mutant formed biofilms of $6.83{\pm}0.38\;and\;5.33{\pm}0.45\;log\;cfu/cm^{2}$, respectively. L. monocytogenes 10403S in BHI medium containing 6% NaCl formed 4.7 times larger biofilm than without NaCl. Culture of L. monocytogenes 10403S and sigB null mutant at $4^{\circ}C$ did not show any significant differences in biofilm formation. The results suggest biofilm formation is activated by ${\sigma}^{B}$ and NaCl, whereas not affected by low temperature stress in L. monocytogenes 10403S. More studies are necessary to determine biofilm formation mechanism in osmotolerant L. monocytogenes.

Identification of a Second Type of AHL-Lactonase from Rhodococcus sp. BH4, belonging to the α/β Hydrolase Superfamily

  • Ryu, Du-Hwan;Lee, Sang-Won;Mikolaityte, Viktorija;Kim, Yea-Won;Jeong, Haeyoung;Lee, Sang Jun;Lee, Chung-Hak;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.937-945
    • /
    • 2020
  • N-acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) plays a major role in development of biofilms, which contribute to rise in infections and biofouling in water-related industries. Interference in QS, called quorum quenching (QQ), has recieved a lot of attention in recent years. Rhodococcus spp. are known to have prominent quorum quenching activity and in previous reports it was suggested that this genus possesses multiple QQ enzymes, but only one gene, qsdA, which encodes an AHL-lactonase belonging to phosphotriesterase family, has been identified. Therefore, we conducted a whole genome sequencing and analysis of Rhodococcus sp. BH4 isolated from a wastewater treatment plant. The sequencing revealed another gene encoding a QQ enzyme (named jydB) that exhibited a high AHL degrading activity. This QQ enzyme had a 46% amino acid sequence similarity with the AHL-lactonase (AidH) of Ochrobactrum sp. T63. HPLC analysis and AHL restoration experiments by acidification revealed that the jydB gene encodes an AHL-lactonase which shares the known characteristics of the α/β hydrolase family. Purified recombinant JydB demonstrated a high hydrolytic activity against various AHLs. Kinetic analysis of JydB revealed a high catalytic efficiency (kcat/KM) against C4-HSL and 3-oxo-C6 HSL, ranging from 1.88 x 106 to 1.45 x 106 M-1 s-1, with distinctly low KM values (0.16-0.24 mM). This study affirms that the AHL degrading activity and biofilm inhibition ability of Rhodococcus sp. BH4 may be due to the presence of multiple quorum quenching enzymes, including two types of AHL-lactonases, in addition to AHL-acylase and oxidoreductase, for which the genes have yet to be described.

Study of Formation Factor of Biofilm on Aluminum surface and Removal Efficiency of Biofilm by Antimicrobials (알루미늄 표면에 생물막의 형성인자 및 항균제에 의한 생물막 제거효과 분석)

  • Park, SangJun;Oh, YoungHwan;Jo, BoYeon;Lee, JaeShin;Lee, SangWha;Jeong, JaeHyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.730-739
    • /
    • 2015
  • 108 microorganism types (79 types of fungi and 29 types of bacteria) were isolated from 25 automobiles generating bad odor when the air conditioner was turned on, and 43 types of fungi and 23 types of bacteria were identified. The analysis of condensate generated by the air conditioners in the automobiles indicated pH 6.4~7.1, 12.5~34.2 mg/L carbon source, 0.9~18.6 mg/L nitrogen source, 0.5~27.8 mg/L ion contents, and 0.1~7.7 mg/L mineral contents. The biofilms were formed by the mesophiles under the summer temperature/humidity condition ($26^{\circ}C$, 70% R.H.), and they were regenerated when the environmental factors (nutritional contents and temperature/humidity) were appropriate even after they were artificially removed. Although the antimicrobials removed 99.9% of planktonic cells within 15 minutes, they were not effective in removing biofilm. Up to 1,950 ppmv of ethanol was observed in the automobile treated with the antimicrobials. Although the figure is lower than the acute toxicity level when inhaled by humans, the health safety of the chemical substances used in the antimicrobials needs to be reviewed.

LABORATORY STUDIES ON MIC OF AISI TYPE 304 STAINLESS STEEL USING BACTERIA ISOLATED FROM A W ASTEWATER TREATMENT SYSTEM

  • Sreekumari, Kurissery R.;Kyozo, Hirotani;Katsuya, Akamatsu;Takashi, Imamichi;Yasushi, Kikuchi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.260-265
    • /
    • 2002
  • Microbiologically influenced Corrosion (MIC) is one of the most deleterious effects of metal microbe interactions. When a fresh metal surface comes in contact with a non-sterile fluid, biofilm formation is ensued. This might result in the initiation of corrosion. The sites and materials where MIC is implicated are versatile. Industries such as shipping, power generation, chemical etc are reported to be affected. The rapid and unexpected failure of AISI type 304 stainless steel was investigated in the laboratory by simulation studies for a period of 4 months. Slime and water samples from the failure site were screened for corrosion causing bacteria. Both aerobic and anaerobic nora were enumerated and identified using PCR techniques. Pseudomonas sp. and Bacillus sp. were the most common aerobic bacteria isolated from the water and slime samples, whilst sulfate reducing bacteria (SRB) were the major anaerobic bacteria. The aerobic bacteria were used for the corrosion experiments in the laboratory. Coupon exposure studies were conducted using a very dilute (0.1%V/V) nutrient broth medium. The coupons after retrieval were observed under a Scanning Electron Microscope (SEM) for the presence of MIC pits. Compared to sterile controls, metal coupons exposed to Pseudomonas sp and Bacillus sp. showed the initiation of severe pitting corrosion. However, amongst these two strains, Psudomonas sp. caused pits in a very short span of 14 days. Towards the end of the experiment, severe pitting was observed in both the cases. The detailed observation of pits showed they vary both in number and shapes. Whilst the coupons exposed to Bacillus sp. showed widely spread scales like pits, those exposed to Pseudomonas sp. showed smaller and circular pits, which had grown in number and size by the end of the experiment. From these results it is inferred that the rapid and unexpected failure of 304 SS might be due to MIC. Pseudonwnas sp. could be considered as the major responsible bacteria that could initiate pits in the metallic structures. As the appearance of pits was different in both the tested strains, it was thought that the mechanisms of pit formation are different. Experiments on these lines are being continued.

  • PDF

Inhibitory Effect of Dry-Heat Treatment and Chemical Sanitizers against Foodborne Pathogens Contaminated on the Surfaces of Materials (재질 표면에 오염된 여러 병원성 세균에 대한 건열살균 및 살균소독제의 저해효과)

  • Bae, Young-Min;Heu, Sun-Gi;Lee, Sun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.9
    • /
    • pp.1265-1270
    • /
    • 2009
  • Pathogens contaminated on the surface of utensils could contribute to the occurrence of outbreaks due to cross-contamination to foods during the food preparation process. Therefore, the efficacy of chemical sanitizers (chlorine-based and alcohol-based commercial sanitizers) and dry-heat ($71^{\circ}C$) on inhibiting biofilms of five foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Pseudomonas aeruginosa, Listeria monocytogenes, and Staphylococcus aureus) on the surface of stainless steel and polypropylene were investigated in this study. Initial populations of pathogens were 8.8$\sim$9.3 and 9.4$\sim$10.3 log CFU/coupon on the surface of stainless steel and polypropylene coupon, respectively, and these populations were not significantly reduced when they were treated with water for 5 min at room temperature. Treatments with chlorine sanitizer and dry-heat were not effective on inactivating pathogens on the surfaces of stainless steel and polypropylene. In contrast, treatments with alcohol sanitizer were very effective on inactivating pathogens on the surfaced of stainless steel and polypropylene. Reduction levels ranged from 3.4 to 6.4 log and from 5.5 to 7.4 log CFU/coupon in stainless steel and plastic coupons, respectively. From these results, alcohol-based sanitizer could be used as a potential way for controlling microbial contamination on the surface of utensils, cooking equipment, and other related environments.

Fusobacterium nucleatum modulates serum binding to Porphyromonas gingivalis biofilm (Porphyromonas gingivalis biofilm에 대한 면역혈청의 침투력에 대한 Fusobacterium nucleatum의 조절효과)

  • Choi, Jeom-Il;Kim, Sung-Jo;Kim, Soo-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.661-668
    • /
    • 2001
  • Anti-P. gingivalis immune sera were obtained from mice immunized with either P. gingivalis alone, or F. nucleaturm followed by P. gingivalis. Two groups of immune sera were examined for binding capacity to P. gingivalis biofilm by confocal laser scanning microscope, Antibody avidity index was also determined for each immune sera. The results indicated that prior immunization of mice with F. nucleaturm impaired P. gingivalis-specific immune sera in binding capacity to biofilm and antibody avidity to P. gingivalis. Elevated antibody responses in patients with destructive periodontal disease has often been related to suboptimal level of protective antibody $(opsonophagocytosis)^{1-3)}$ while post-immune sera obtained with experimental animals using a single periodontal pathogen demonstrated satisfactory levels of protective function against the homologous bacterial $challenge^{4,5)}$.The reason is unclear why elevated IgG responses in periodontal patients to periodontal pathogens do not necessarily reflect their protective function. Such an immune deviation might be derived from the fact that destructive periodontal disease is cumulative result of immunopathologic processes responding to an array of different colonizing microorganisms sequentially infecting in the subgingival environmental niche. Fusobacterium nucleaturm is one of the key pathogens in gingivitis, in the transitional phase of conversion of gingivitis into destructive periodontitk, and in adult $periodontitis^{6-8)}$. It also plays a central role in coaggregation with other important microbial species in subgingival $area^{6,9,10)}$ as well as in $biofilm^{11)}$, especially with Porphyromonas gingjvalis in synergism of virulence in human periodontal disease or in animal $models^{12-14)}$. This organism has also been reported to have immune modulating activity for secondary immune response to Actinobacillus $actinomycetemcomitans^{15)}$. It is presumed that sequential colonization and intermicrobial coaggregation between intermediate and late colonizers could potentially modulate the immune responses and development of specific T cell phenotypes in periodontal lesions. We have recently demonstrated the skewed polarization of P. gingivalis-specific helper T cell clones in mice immunized with F. nucleaturm followed by P. $gingivalis.^{16)}$. Consequently F. nucleaturm may initially prime the immune cells and modify their responses to the successive organism, P. gingivalis. This could explain why one frequently observes non-protective serum antibodies to P. gingivalis in periodontal patients in contrast with those obtained from animals that were immunized with $P.gingivalis\;alone^{17)}$. The present study was performed to investigate the immune modulating effect of F. nucleatum on serum binding to experimental biofilms and the avidity of anti-P. gingivalis antibody.

  • PDF

Bacterial Contamination of Dental Unit Water Systems in a Student Clinical Simulation Laboratory of College of Dentistry (치과대학 임상 시뮬레이션 실습실 치과용 유니트 수계의 세균 오염도 조사)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.15 no.2
    • /
    • pp.232-237
    • /
    • 2015
  • The water supplied from dental unit water systems (DUWS) in dentistry may be heavily contaminated with bacteria and thus may be a potential source of infection for both practice staff and patients. The aim of this study was to evaluate the level of heterotrophic bacteria and to confirm the presence of opportunistic pathogens from DUWS in student clinical simulation laboratory of college of dentistry. Water samples were collected from 36 ultrasonic scalers in student clinical simulation laboratory. The levels of heterotrophic bacteria in water samples were quantified by counting colony forming units (CFUs) on R2A agar media. In addition, opportunistic pathogens were detected by using the polymerase chain reaction (PCR) method. The mean CFUs were 16,095 CFU/ml for water samples and all of water samples exceeded current American Dental Association recommendations of 200 CFU/ml. Pseudomonas species and non-tuberculous Mycobacterium species were detected in the one sample and two samples, respectively, among the 36 water samples by the PCR with specific primers for these bacteria. Our study indicated that DUWS in student clinical simulation laboratory can cause potential infection in students and participants. This study suggested the dental unit water line management and wearing personal protective equipment in student clinical simulation laboratory will be needed to reduce bacterial contamination.

Homology Modeling and Characterization of Oligoalginate Lyase from the Alginolytic Marine Bacterium Sphingomonas sp. Strain MJ-3 (알긴산을 분해하는 해양미생물인 Sphingomonas sp. MJ-3 균주의 올리고알긴산 분해효소의 상동성 모델링 및 특성연구)

  • Kim, Hee Sook
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.121-129
    • /
    • 2015
  • Alginates are found in marine brown seaweeds and in extracellular biofilms secreted by some bacteria. Previously, we reported an oligoalginate lyase from Sphingomonas sp. MJ-3 (MJ3-Oal) that had an exolytic activity and protein sequence homology with endolytic polymannuronate (polyM) lyase in the N-terminal region. In this study, the MJ3-Oal was tested for both exolytic and endolytic activity by homology modeling using the crystal structure of Alg17c from Saccharophagus degradans 2-40T. The tyrosine residue at the $426^{th}$ position, which possibly formed a hydrogen bond with the substrate, was mutated to phenylalanine. The FPLC profiles showed that MJ3-Oal degraded alginate quickly to monomers as a final product through the oligmers, whereas the Tyr426Phe mutant showed only exolytic alginate lyase activity. $^1H$-NMR spectra also showed that MJ3-Oal degraded the endoglycosidic bond of polyM and polyMG (polymannuronate-guluronate) blocks. These results indicate that oligoalginate lyase from Sphingomonas sp. MJ-3 probably catalyzes the degradation of both exo- and endo-glycosidic bonds of alginate.

Periodontopathogen LPSs Regulate MicroRNA Expression in Human Gingival Epithelial Cells

  • Lee, Hwa-Sun;Na, Hee-Sam;Jeong, So-Yeon;Jeong, Sung-Hee;Park, Hae-Ryoun;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.36 no.3
    • /
    • pp.109-116
    • /
    • 2011
  • Periodontitis results from the activation of host immune and inflammatory defense responses to subgingival plaque bacteria, most of which are gram-negative rods with lipopoly-saccharides (LPSs) in their cell walls. LPSs have been known to induce proinflammatory responses and recently it was reported also that they induce the expression of microRNAs (miRNAs) in host cells. In our current study therefore, we aimed to examine and compare the miRNA expression patterns induced by the LPSs of major periodontopathogens in the human gingival epithelial cell line, Ca9-22. The cells were treated with 1 ${\mu}g$/ml of E. coli (Ec) LPS or 5 ${\mu}g$/ml of an LPS preparations from four periodontopathogens Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Aggregatibacter actinomycetemcomitans (Aa), and Fusobacterium nucleatum (Fn) for 24 h. After small RNA extraction from the treated cells, miRNA microarray analysis was carried out and characteristic expression profiles were observed. Fn LPS most actively induced miRNAs related to inflammation, followed by Aa LPS, Pi LPS, and Ec LPS. In contrast, Pg LPS only weakly activated miRNAs related to inflammation. Among the miRNAs induced by each LPS, miR-875-3p, miR-449b, and miR-520d-3p were found to be commonly up-regulated by all five LPS preparations, although at different levels. When we further compared the miRNA expression patterns induced by each LPS, Ec LPS and Pi LPS were the most similar although Fn LPS and Aa LPS also induced a similar miRNA expression pattern. In contrast, the miRNA profile induced by Pg LPS was quite distinctive compared with the other bacteria. In conclusion, miR-875-3p, miR-449b, and miR-520d-3p miRNAs are potential targets for the diagnosis and treatment of periodontal inflammation induced by subgingival plaque biofilms. Furthermore, the observations in our current study provide new insights into the inflammatory miRNA response to periodontitis.

Optimum Treatment Parameters for Photodynamic Antimicrobial Chemotherapy on Streptococcus mutans Biofilms (Streptococcus mutans biofilm에 대한 광역동 치료의 최적조건에 관한 연구)

  • Choi, Seojung;Park, Howon;Lee, Juhyun;Seo, Hyunwoo;Lee, Siyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.2
    • /
    • pp.151-157
    • /
    • 2015
  • The purpose of this study was to evaluate the effects of Photochemotherapy using a combination of erythrosine and standard halogen dental curing lights on the viability of Streptococcus mutans in the biofilm phase. To investigate the optimum treatment parameters, the researchers controlled the concentration of erythrosine, light irradiation time and the treatment time of erythrosine. The higher concentration of erythrosine (0, 10, 20, 40, 80 M) in the presence of light irradiation created greater effects in reducing the viability of S. mutans. The results showed a statistically significant difference among the antimicrobial effects in 20, 40, 80 M erythrosine. The higher irradiation time of light (0, 5, 15, 30, 60, 75s) in the presence of erythrosine showed greater effects in reducing the viability of S. mutans. There was statistically significant difference in 30, 60, 75 seconds. The higher treatment time of erythrosine (0, 1, 2.5, 5min) in the presence of erythrosine created greater effects on reduction of S. mutans viability. Statistically significant differences were found between 2.5 and 5 minutes of erythrosine treatment time. The results of this study showed that the photochemotherapy on S. mutans using erythrosine and the halogen dental curing lights conventionally used in dental clinics is effective in the condition of 20-40 M erythrosine concentration, irradiation time over 30 seconds, and erythrosine treatment time over 2.5 minutes.