• Title/Summary/Keyword: biofilms

Search Result 258, Processing Time 0.034 seconds

The Study of Antibiotic Resistance in Bacterial Biofilms (박테리아 생체막에 대한 항생제 내성 연구)

  • Kim Jin Wook;Joo Chi Un;Park Jin Yong;Lee Song Ae;Kim In Hae;Lee Jae Hwa
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.4
    • /
    • pp.157-160
    • /
    • 2005
  • Antibiotic resistance of bacteria in the biofilm mode of growth contributes to the chronicity of infection and disease. The penetration of antibiotic, through biofilm developed in an itt vitro model system was investigated. Antibiotic resistant bacteria (E. coli) were obtained from Culture Collection of Antibiotic Resistant Microbes. Ca-alginate bead used as simulated biofilm and a cell entrapment test using compressed air were experiment for the improvement cell viability. Antibiotic susceptibilities though biofilms was measured by assaying the concentration of antibiotic that diffused through the biofilm to minimal inhibition concentration (MIC). Survival of immobilized cells were reduced as compared to free cells. In case of antibiotic susceptible E. coli reduced continuously, but antibiotic resistant E. coli kept up survival rate constantly. Survival was showed after exposed to the antibiotics that the more treated antibiotic resistant E. coli and low concentration of antibiotics) the more survived.

  • PDF

Synergistic effect of xylitol and ursolic acid combination on oral biofilms

  • Zou, Yunyun;Lee, Yoon;Huh, Jinyoung;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.288-295
    • /
    • 2014
  • Objectives: This study was designed to evaluate the synergistic antibacterial effect of xylitol and ursolic acid (UA) against oral biofilms in vitro. Materials and Methods: S. mutans UA 159 (wild type), S. mutans KCOM 1207, KCOM 1128 and S. sobrinus ATCC 33478 were used. The susceptibility of S. mutans to UA and xylitol was evaluated using a broth microdilution method. Based on the results, combined susceptibility was evaluated using optimal inhibitory combinations (OIC), optimal bactericidal combinations (OBC), and fractional inhibitory concentrations (FIC). The anti-biofilm activity of xylitol and UA on Streptococcus spp. was evaluated by growing cells in 24-well polystyrene microtiter plates for the biofilm assay. Significant mean differences among experimental groups were determined by Fisher's Least Significant Difference (p < 0.05). Results: The synergistic interactions between xylitol and UA were observed against all tested strains, showing the FICs < 1. The combined treatment of xylitol and UA inhibited the biofilm formation significantly and also prevented pH decline to critical value of 5.5 effectively. The biofilm disassembly was substantially influenced by different age of biofilm when exposed to the combined treatment of xylitol and UA. Comparing to the single strain, relatively higher concentration of xylitol and UA was needed for inhibiting and disassembling biofilm formed by a mixed culture of S. mutans 159 and S. sobrinus 33478. Conclusions: This study demonstrated that xylitol and UA, synergistic inhibitors, can be a potential agent for enhancing the antimicrobial and anti-biofilm efficacy against S. mutans and S. sobrinus in the oral environment.

Therapeutic strategies to manage chronic wounds by using biofilm dispersal mechanisms (생물막 분산기작을 이용한 만성창상의 치료전략)

  • Kim, Jaisoo;Kim, Min-Ho
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.87-102
    • /
    • 2019
  • Most chronic wounds persist in the inflammatory phase during wound healing due to the biofilm. Biofilms are resistant to antibiotics, weakening penetration, resistance to biocides and weakening local immune responses. The biofilm is firmly attached to the surrounding tissues and is very difficult to remove. Therefore, strategies to remove hard biofilms without damaging surrounding tissue are very important. One of possible strategies is dispersal. So many studies have been done to develop new strategies using dispersal mechanisms. In this review paper, especially chemotaxis, phage therapy, polysaccharides, various enzymes (glycosidases, proteases, and deoxyribonucleases), surfactants, dispersion signals, autoinducers, inhibitors were introduced. Combination therapies with other therapies such as antibiotic therapy were also introduced. It is expected that the possibility of treatment of chronic wound infection using the knowledge of the biofilm dispersal mechanisms presented in this paper will be higher.

Increased Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus USA300 Δpsm Mutants and a Complementation Study of Δpsm Mutants Using Synthetic Phenol-Soluble Modulins

  • Song, Hun-Suk;Bhatia, Shashi Kant;Choi, Tae-Rim;Gurav, Ranjit;Kim, Hyun Joong;Lee, Sun Mi;Park, Sol Lee;Lee, Hye Soo;Joo, Hwang-Soo;Kim, Wooseong;Seo, Seung-Oh;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.115-122
    • /
    • 2021
  • Phenol-soluble modulins (PSMs) are responsible for regulating biofilm formation, persister cell formation, pmtR expression, host cell lysis, and anti-bacterial effects. To determine the effect of psm deletion on methicillin-resistant Staphylococcus aureus, we investigated psm deletion mutants including Δpsmα, Δpsmβ, and Δpsmαβ. These mutants exhibited increased β-lactam antibiotic resistance to ampicillin and oxacillin that was shown to be caused by increased N-acetylmannosamine kinase (nanK) mRNA expression, which regulates persister cell formation, leading to changes in the pattern of phospholipid fatty acids resulting in increased anteiso-C15:0, and increased membrane hydrophobicity with the deletion of PSMs. When synthetic PSMs were applied to Δpsmα and Δpsmβ mutants, treatment of Δpsmα with PSMα1-4 and Δpsmβ with PSMβ1-2 restored the sensitivity to oxacillin and slightly reduced the biofilm formation. Addition of a single fragment showed that α1, α2, α3, and β2 had an inhibiting effect on biofilms in Δpsmα; however, β1 showed an enhancing effect on biofilms in Δpsmβ. This study demonstrates a possible reason for the increased antibiotic resistance in psm mutants and the effect of PSMs on biofilm formation.

Physicochemical, Antibacterial Properties, and Compatibility of ZnO-NP/Chitosan/β-Glycerophosphate Composite Hydrogels

  • Huang, Pingping;Su, Wen;Han, Rui;Lin, Hao;Yang, Jing;Xu, Libin;Ma, Lei
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.522-530
    • /
    • 2022
  • In this study we aimed to develop novel ZnO-NP/chitosan/β-glycerophosphate (ZnO-NP/CS/β-GP) antibacterial hydrogels for biomedical applications. According to the mass fraction ratio of ZnO-NPs to chitosan, mixtures of 1, 3, and 5% ZnO-NPs/CS/β-GP were prepared. Using the test-tube inversion method, scanning electron microscopy and Fourier-transform infrared spectroscopy, the influence of ZnO-NPs on gelation time, chemical composition, and cross-sectional microstructures were evaluated. Adding ZnO-NPs significantly improved the hydrogel's antibacterial activity as determined by bacteriostatic zone and colony counting. The hydrogel's bacteriostatic mechanism was investigated using live/dead fluorescent staining and scanning electron microscopy. In addition, crystal violet staining and MTT assay demonstrated that ZnO-NPs/CS/β-GP exhibited good antibacterial activity in inhibiting the formation of biofilms and eradicating existing biofilms. CCK-8 and live/dead cell staining methods revealed that the cell viability of gingival fibroblasts (L929) cocultured with hydrogel in each group was above 90% after 24, 48, and 72 h. These results suggest that ZnO-NPs improve the temperature sensitivity and bacteriostatic performance of chitosan/β-glycerophosphate (CS/β-GP), which could be injected into the periodontal pocket in solution form and quickly transformed into hydrogel adhesion on the gingiva, allowing for a straightforward and convenient procedure. In conclusion, ZnO-NP/CS/β-GP thermosensitive hydrogels could be expected to be utilized as adjuvant drugs for clinical prevention and treatment of peri-implant inflammation.

Applicability of Fomes fomentariusfor the formation of a mycelial mat (균사체 매트 제작을 위한 말굽버섯의 응용 가능성)

  • Kim, Hyun-Suk;Oh, Deuk-Sil;Jung, Young-Hyun;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.20 no.3
    • /
    • pp.163-167
    • /
    • 2022
  • Bio-based alternative leathers may be produced from biomass fiber, protein polymers, bacterial cellulose, and mushroom mycelia. Of these components, mushroom mycelia are of greatest interest. In this study, the potential of Fomes fomentariusas a mushroom mycelial mat was confirmed, and the optimal strain for the development of the mycelial mat was determined. Moreover, the quality of the mycelial mat was improved by identifying an efficient culture method to increase productivity. Mutant strains whose independence was verified were obtained by treatment with gamma irradiation under various conditions. Biofilm formation by the resulting strains was examined in sawdust and liquid media and the characteristics of the biofilms were analyzed. The biofilm of the mutant strains showed results that were similar to or better than the biofilms of longevity and cypress mushrooms. These findings are expected to be utilized in future research aimed at discovering new biomaterials using mushroom mycelia.

Inhibitory Effects of Cinnamon, Clove and Lemongrass Essential Oils against Biofilm Formation by Food Poisoning Bacteria (식중독 미생물의 biofilm 형성에 대한 계피, 정향 및 레몬그래스 정유의 억제 효과)

  • Kim, Hyeong-Eun;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.5
    • /
    • pp.430-439
    • /
    • 2021
  • Essential oils with excellent antibacterial activity were used to study the inhibitory effect against the six types of food poisoning biofilms formed on the surfaces of polyethylene (PE) and stainless steel (SS) that are widely used for food processing instruments and containers. The antibacterial activity of 20 kinds of essential oils was tested using the disk diffusion method. The result showed the degree of antibacterial activity in the following order: cinnamon> clove> lemongrass> peppermint> pine needle (highest to lowest). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of cinnamon and clove oil were in the range of 0.63-1.25 mg/mL and 1.25-2.50 mg/mL, respectively. The MIC and MBC of lemongrass oil were 1.25-2.50 mg/mL and 2.50-5.00 mg/mL, respectively, showing slightly less antibacterial activity. Although the preventive effect of three types of essential oils on the biofilm formation differed slightly depending on food poisoning bacteria, PE, and SS, it was found that the precoating of 0.5% cinnamon, clove, and lemongrass oil on the PE and SS affects the formation of biofilm. Increased essential oil concentration significantly inhibited the biofilm formation for all food poisoning bacteria (P<0.05), and biofilms of Listeria monocytogenes and Staphylococcus aureus were not formed when treated with 0.5% cinnamon and clove oil. The elimination effect of food poisoning bacteria biofilms formed on the surfaces of PE and SS differed depending on the type of food poisoning bacteria. Still, the biofilm elimination effect increased as the essential oil concentration increased, and the biofilm elimination rate of clove oil was generally high. Therefore, this study found that the cinnamon and clove essential oils (0.5%) are suitable natural materials that effectively prevent, inhibit, and remove the biofilms formed by the food poisoning bacteria on the surfaces of polyethylene and stainless steel.

Ammonia Removal Characteristics of Biolfilm Reactor (생물막을 이용한 상수 원수에서의 암모니아 제거 특성)

  • Shin, Hang-Sik;Lim, Kycong-Ho;Lee, Sang-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.78-84
    • /
    • 1996
  • The presence of ammonia, usually in the form of ammonium ion ($NH_4{^+}$), can enhance bacterial growth m the distribution system and make the production of drinking water more costly if ammonium must be removed to ensure good disinfection. Removal of ammonia by biological oxidation could be economical which prevents excess chlorine dosage In this research, effects of hydraulic retention time (HRT) and media type on the ammonia removal efficiencies of submerged biofilm reactor were investigated. The biofilm reactors combined the characteristics of high biological solids capture efficiency and good hydraulic control. The results indicate that biofilms can remove over 77 percent of the ammonia with HRT of longer than 2 hr even at low temperature ranging from 14.6 to $16.6^{\circ}C$. The HRT has a significant effect on nitrification. The overall nitrification and efficiency of ammonia removal increase with increasing HRT. It has also been observed that when the fibrous media was used, the ammonia removal, nitrification rate and endurance to shock improved.

  • PDF

Epiphytic Diatoms of the Reed Plants in Lake Gocheonam

  • Cho, Kyung-Je
    • ALGAE
    • /
    • v.19 no.4
    • /
    • pp.311-320
    • /
    • 2004
  • A great portion of the marginal zone in Lake Gocheonam was covered with reed plants. Algae attached to the reed stems were exclusively composed of diatoms. Sixty-six species of diatoms were encountered in a floral survey. The important species were Nitzschia liebetruthii Rabh., Nitzschia acicularis (Ku¨tz.) W. Sm., Navicula gregaria Donk., Cocconeis placentula var. lineata (Ehr.) V.H. etc. Among the diatom flora, six species - Navicula nivalis Ehr., Navicula recens Lange-B., Nitzschia angustatula Lange-B., Nitzschia compressa (Bail.) Boyer, Nitzschia lanceola var. minutula Grin. and Surirella crumena Bre´b. - were recorded in Korea for the first times. Life forms of the reed-attached diatoms were simply prostrate. The biomass of epiphytic algae ranged from 0.05㎍ chl-$\alpha$ cm$^{-2}$ to 2.32$\mu$g chl-$\alpha$ cm$^{-2}$. The algal biomass of dead stems was higher than that of the living stems, and their flora were rich. The algal biomass reached a maximum in the spring after the death of the reed plants. The reed plants exhibited rich diatom flora and significantly high algal biomass on their stems to have taxonomical and ecological importance in the freshwater.