• Title/Summary/Keyword: biofilm thickness

Search Result 50, Processing Time 0.031 seconds

Effect of Aeration Intensity on the Treatment Efficiency in Submerged Biofilm Process (침지형 생물막공법에 있어서 포기강도가 처리효율에 미치는 영향)

  • 박종웅
    • Journal of Environmental Health Sciences
    • /
    • v.15 no.1
    • /
    • pp.89-96
    • /
    • 1989
  • An aerated submerged biofilm reactor is the reactor in which influent organic substrates are aerobically oxidized by suspended biomass and attached biomass of biofilm grown on the surface of submerged media. The objective of this study was to investigate the effect of aeration intensity on microbial characteristics and treatment efficiency in submerged biofilm process. In the organic loading rate (4.3kg BOD/$m^{3} \cdot day$), biofilm thickness (420-780$\mu$m) and attached biomass(1.79-2.94mg/cm$^{2}$) increased as the aeration intensity increased (2-8m$^{3}$ air/$m^{2} \cdot hr$), but biofilm density decreased (42.25-37.69mg/cm$^{3}$). The minimum aeration intensity for prevention of deposited biomass was 2m$^{3}$ air/$m^{2} \cdot hr$. The minimum dissolved oxygen of 2.5mg/l had to be maintained for improved efficiency.

  • PDF

Control of Excessive Biofilm for the Treatment of High Strength Organic Wastewater by Biofilm Process (생물막공법에 의한 고농도 유기폐수 처리시 생물막 과부착 제어)

  • 임재명;권재혁;한동준
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.3
    • /
    • pp.67-77
    • /
    • 1995
  • This study was performed for minimization of excessive biofilm effects at the high strength organic wastewater treatment. As a results of biofilm attachment experiment using piggery wastewater, aggravation of water quality due to excessive biofilm showed after 15 days of operating times.4 excessive biofilm phase, the equivalent biofilm thickness and VSS contents per unit aura were observed in the range of 1,100 to $1,200{\mu}m$ and 2.5 to 3.0mg $VSS/cm^{2}$, respectively. In the aerobic fixed biofilm reactor/anoxic fixed biofilm reactor(AFBR/ANFBR) process with endogenous respiration phase, the BOD removal efficiency was obtained more than 90 percentage at the surface loading rate and volumetric loading rate of the AFBR maintained less than 17 g $BOD/m^{2}{\cdot}$day and 1.7kg $BOD/m^{3}{\cdot}$day, respectively. The removal efficiency of TKN and $NH_{3}$-N at the loading rates below 5.60g $NH_{3}-N/m^{2}{\cdot}day$ and 0.56kg $NH_{3}-N/m^{3}{\cdot}$day were above 76 percentage and 82 percentage, respectively. In order to reduced sludge production rate and aggravation of water quality, endogenous respiration phase was accepted at first AFBR reactor. As a results of this operating condition, sludge production was minimized and removal efficiency was maintained stability.

  • PDF

Characteristics and Phenol Wastewater Treatment of Aerobic Biofilm Reactor Used Rhodococcus sp. EL-GT and Sludge (Rhodococcus sp. EL-GT와 Sludge를 이응한 호기성 생물막 반응기의 특성 및 페놀 처리)

  • Park, Geun-Tae;Won, Seong-Nae;Cho, Sun-Ja;Son, Hong-Joo;Lee, Geon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.553-560
    • /
    • 2002
  • The research was performed to compare to the biofilm characteristics and phenol removal efficiency in RBCs(Rotating Biological Contactor) using Rhodococcus sp. EL-GT(single population) and activated sludge(mixed population) as inoculum. Both reactors showed similar tendency on variations of dry weight, thickness and dry density of biofilm. However, the growth of biofilm thickness in 3 and 4 stage of single population reactor has sustained longer than that of the mixed population reactor. Unlike the mixed population reactor, the dry density of biofilm in the single population reactor had a difference between 1, 2 stage and 3, 4 stage. The single population reactor was stably operated without the decrease of phenol removal efficiency in the range of pH 6 ~ 9 and 15mM phenol was completely degraded in these pH ranges. But in case of the mixed population reactor, the phenol degradability was dramatically decreased at over 5mM phenol concentration because of the overgrowth and detachment of its biofilm.

A Study on Aerobic Fluidized-Bed Biofilm Reactor for Treating Industrial Wastewaters(III) -Mathematical model for organic removal- (산업폐수처리를 위한 호기성 생물막 유동층 반응기의 연구(III) -유기물 제거에 관한 수학적 모델-)

  • 안갑환;박상준;송승구
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.331-336
    • /
    • 1993
  • A mathematical model for organic removal efficiency was investigated in a fluidized bed biofilm reactor by changing the feed flow rate, the residence time and the recycle flow rate. In batch experiment, organic removal could be assumed as first order and an intrinsic first order rate constant(k1) was found $6.4{\times}^{-6}cm^3/mg{\cdot}sec$ at influent COD range of 3040 - 6620 mg/L. In continuous experiment, at the condition of the influent COD, 3040 mg/L, the superficial upflow velocity, 0.47 cm/sec, the biofilm thickness 336 ${\mu}m$ and the biofilm dry density 0.091 g/mL, the calculated COD removal efficiency from the mathematical model gave 60% which was very close to the observed value of 66 %. As the feed flow rate was increased, the COD removal efficiency was sharply decreased and at constant feed flow rate, the COD removal efficiency was decreased also as the residence time being decreased.

  • PDF

Understanding Bacterial Biofilm Stimulation Using Different Methods - a Criterion for Selecting Epiphytes by Plants

  • Bhushan, Shashi;Gogoi, Mandakini;Bora, Abhispa;Ghosh, Sourav;Barman, Sinchini;Biswas, Tethi;Sudarshan, Mathummal;Thakur, Ashoke Ranjan;Mukherjee, Indranil;Dey, Subrata Kumar;Chaudhuri, Shaon Ray
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.303-309
    • /
    • 2019
  • Earlier studies by our group revealed that gallic acid in phytochemicals stimulated biofilm production in epiphytes, while caffeic acid in phytochemicals inhibited biofilm production in non-epiphytes. It is well documented that antimicrobial secretion by some epiphytic bacteria inhibits non-epiphytic bacterial growth on leaf surfaces. These selection criteria help plants choose their microbial inhabitants. Calcium and iron in phytochemicals also stimulate biofilm formation and thus, may be selection criteria adopted by plants with respect to their native epiphytic population. Furthermore, the processing of leaves during phytochemical extraction impacts the composition of the extract, and therefore its ability to affect bacterial biofilm formation. Computation of the Hurst exponent using biofilm thickness data obtained from the Ellipsometry of Brewster Angle Microscopic (BAM) images is an efficient tool for understanding the impact of phytochemicals on epiphytic and non-epiphytic populations when compared to fluorescent microscopy, scanning electron microscopy, and staining techniques. To the best of our knowledge, this is the first report that uses the Hurst exponent to elucidate the mechanism involved in plant microbe interaction.

Application of acyl-homoserine lactones for regulating biofilm characteristics on PAO1 and multi-strains in membrane bioreactor

  • Wonjung, Song;Chehyeun, Kim;Jiwon, Han;Jihoon, Lee;Zikang, Jiang;Jihyang, Kweon
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.35-45
    • /
    • 2023
  • Biofilms significantly affect the performance of wastewater treatment processes in which biodegradability of numerous microorganisms are actively involved, and various technologies have been applied to secure microbial biofilms. Understanding changes in biofilm characteristics by regulating expression of signaling molecules is important to control and regulate biofilms in membrane bioreactor, i.e., biofouling. This study investigated effects of addition of acyl-homoserine lactones (AHL) as a controllable factor for the microbial signaling system on biofilm formation of Pseudomonas aeruginosa PAO1 and multiple strains in membrane bioreactor. The addition of three AHL, i.e., C4-, C6-, and C8-HSL, at a concentration of 200 ㎍/L, enhanced the formation of the PAO1 biofilm and the degree of increases in the biofilm formation of PAO1 were 70.2%, 76.6%, and 72.9%, respectively. The improvement of biofilm formation of individual strains by C4-HSL was an average of 68%, and the microbial consortia increased by approximately 52.1% in the presence of 200 ㎍/L C4-HSL. CLSM images showed that more bacterial cells were present on the membrane surface after the AHL application. In the COMSTAT results, biomass and thickness were increased up to 2.2 times (PAO1) and 1.6 times (multi-strains) by C4-HSL. This study clearly showed that biofilm formation was increased by the application of AHL to individual strain groups, including PAO1 and microbial consortia, and significant increases were observed when 50 or 100 ㎍/L AHL was administered. This suggests that AHL application can improve the biofilm formation of microorganisms, which could yield an enhancement in efficiency of biofilm control, such as in various biofilm reactors including membrane bioreactor and bioflocculent systems in water/wastewater treatment processes.

Pollutant Removal in Variable HRT Using the Aerobic Biofilm (호기성 생물막을 이용한 HRT 변화에 따른 오염물질 제거)

  • Ahn, Kwang-Ho;Ko, Kwang-Baik;Kim, I-Tae;Kim, Kwang-Soo
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1495-1501
    • /
    • 2012
  • In this study, an experiment was conducted on influent water with low concentrations of organic matter, such as river water or secondary treatment water of a sewage treatment plant, according to HRT changes by using aerobic biofilm. In the biofilm process, as the biofilm increases in thickness, the inner membrane can be low in oxygen transfer rate and become anaerobic conditions, while the detachment of biomass from biofilm occurs. To overcome these limitations in the detachment of microorganisms in biofilm, the yarn, which was made from poly propylene(PP), was weaved and manufactured into a tube. Then, a test was carried out by injecting air so that the interior of the biofilm could create aerobic conditions. The results of the experiment showed that the removal efficiency of $TCOD_{cr}$ reached 66.1~81.2% by HRT 2hr, and 50.9 ~61.8% after HRT 1 hr. The removal efficiency of $SCOD_{cr}$ was 45.9 to 55.1% by HRT 1hr, and 26.1% in HRT 0.5hr, showing the highest removal efficiency in HRT 1hr. The SS removal efficiency was at 81.8 to 94.6%, and the effluent SS concentration was very low, indicating less than 2.2 mg/L in all HRT's. As a result, the $SCOD_{cr}$ and $NH_4{^+}$-N that were removed per specific surface area and attached to microbial biofilm showed the highest efficiency in HRT 1hr with 8.37 $gSCOD_{cr}/m^2{\cdot}d$, 2.93 $gNH_4{^+}-N/m^2{\cdot}d$. From the result of reviewing the characteristics of biofilm growth, microorganisms were found to be attached, and increased by 36 days. Later, they decreased in number through detachment, but showed a tendency to increase again 41 days later due to microbial reproduction.

Hydraulic Shock of Apartment Sewage in Inverse Fluidized Bed Biofilm Reactor (역유동층 생물막 반응기에서 수리학적 충격에 따른 아파트 오수의 처리)

  • 박영식;나영수
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • The objective of this study was to examine the transient response to hydraulic shocks in an Inverse fluidized bed bioflm reactor(IFBBR) for the treatment of apartment sewage. The hydraulic shock experiments, when the system were reached at steady state with each HRT 12, 7, and 4hr, were conducted by chancing twice HRT per day during 3days. The SCOD, SS, DO, and pH of the effluent stream were increased with hydraulic shock, but easily recovered to the steady state of pre-hydraulic shock condition. In spite of hydraulic shock, there were not much variation of biomass concentration, biofilm thickness and biofilm dry density.

  • PDF

Influence of Electric Potential on Structure and Function of Biofilm in Wastewater Treatment Reactor : Bacterial Oxidation of Organic Carbons Coupled to Bacterial Denitrification

  • NA BYUNG KWAN;SANG BYUNG IN;PARK DAE WON;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1221-1228
    • /
    • 2005
  • Carbon electrode was applied to a wastewater treatment system as biofilm media. The spatial distribution of heterotrophic bacteria in aerobic wastewater biofilm grown on carbon electrode was investigated by scanning electron microscopy, atomic force microscopy, and biomass measurement. Five volts of electric oxidation and reduction potential were charged to the carbon anode and cathode of the bioelectrochemical system, respectively, but were not charged to electrodes of a conventional system. To correlate the biofilm architecture of bacterial populations with their activity, the bacterial treatment efficiency of organic carbons was measured in the bioelectrochemical system and compared with that in the conventional system. In the SEM image, the biofilm on the anodic medium of the bioelectrochemical system looked intact and active; however, that on the carbon medium of the conventional system appeared to be shrinking or damaging. In the AFM image, the thickness of biofilm formed on the carbon medium was about two times of those on the anodic medium. The bacterial treatment efficiency of organic carbons in the bioelectrochemical system was about 1.5 times higher than that in the conventional system. Some denitrifying bacteria can metabolically oxidize $H_{2}$, coupled to reduction of $NO_{3}^{-}\;to\;N_{2}$. $H_{2}$ was produced from the cathode in the bioelectrochemical system by electrolysis of water but was not so in the conventional system. The denitrification efficiency was less than $22\%$ in the conventional system and more than $77\%$ in the bioelectrochemical system. From these results, we found that the electrochemical coupling reactions between aerobic and anaerobic reactors may be a useful tool for improvement of wastewater treatment and denitrification efficiency, without special manipulations such as bacterial growth condition control, C/N ratio (the ratio of carbon to nitrogen) control, MLSS returning, or biofilm refreshing.

Combined Effects of Curcumin and (-)-Epigallocatechin Gallate on Inhibition of N-Acylhomoserine Lactone-Mediated Biofilm Formation in Wastewater Bacteria from Membrane Bioreactor

  • Lade, Harshad;Paul, Diby;Kweon, Ji Hyang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1908-1919
    • /
    • 2015
  • This work investigated the potential of curcumin (CCM) and (-)-epigallocatechin gallate (EGCG) to inhibit N-acyl homoserine lactone (AHL)-mediated biofilm formation in gram-negative bacteria from membrane bioreactor (MBR) activated sludge. The minimum inhibitory concentrations (MICs) of CCM alone against all the tested bacteria were 200-350 μg/ml, whereas those for EGCG were 300-600 μg/ml. Biofilm formation at one-half MICs indicated that CCM and EGCG alone respectively inhibited 52-68% and 59-78% of biofilm formation among all the tested bacteria. However, their combination resulted in 95-99% of biofilm reduction. Quorum sensing inhibition (QSI) assay with known biosensor strains demonstrated that CCM inhibited the expression of C4 and C6 homoserine lactones (HSLs)-mediated phenotypes, whereas EGCG inhibited C4, C6, and C10 HSLs-based phenotypes. The Center for Disease Control biofilm reactor containing a multispecies culture of nine bacteria with one-half MIC of CCM (150 μg/ml) and EGCG (275 μg/ml) showed 17 and 14 μg/cm2 of extracellular polymeric substances (EPS) on polyvinylidene fluoride membrane surface, whereas their combination (100 μg/ml of each) exhibited much lower EPS content (3 μg/cm2). Confocal laser scanning microscopy observations also illustrated that the combination of compounds tremendously reduced the biofilm thickness. The combined effect of CCM with EGCG clearly reveals for the first time the enhanced inhibition of AHL-mediated biofilm formation in bacteria from activated sludge. Thus, such combined natural QSI approach could be used for the inhibition of membrane biofouling in MBRs treating wastewaters.