• Title/Summary/Keyword: biofilm development

Search Result 125, Processing Time 0.025 seconds

Membrane Biofouling of Seawater Reverse Osmosis Initiated by Sporogenic Bacillus Strain

  • Lee, Jin-Wook;Ren, Xianghao;Yu, Hye-Weon;Kim, Sung-Jo;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.141-147
    • /
    • 2010
  • The objective of this study was to assess the biofouling characteristics of the Bacillus biofilm formed on reverse osmosis (RO) membranes. For the study, a sporogenic Bacillus sp. was isolated from the seawater intake to a RO process, with two distinct sets of experiments performed to grow the Bacillus biofilm on the RO membrane using a lab-scale crossflow membrane test unit. Two operational feds were used, 9 L sterile-filtered seawater and 109 Bacillus cells, with flow rates of 1 L/min, and a constant 800 psi-pressure and pH 7.6. From the results, the membrane with more fouling, in which the observed permeate flux decreased to 33% of its initial value, showed about 10 and 100 times greater extracellular polymeric substances and spoOA genes expressions, respectively, than the those of the less fouled membrane (flux declined to 20% of its initial value). Interestingly; however, the number of culturable Bacillus sp. in the more fouled membrane was about 10 times less than that of the less fouled membrane. This indicated that while the number of Bacillus had less relevance with respect to the extent of biofouling, the activation of the genes of interest, which is initiative of biofilm development, had a more positive effect on biofouling than the mass of an individual Bacillus bacterium.

Initial Condition of Methanotrophic Consortium Biofilm Reactor(MCBR) for Trichloroethylene Degradation (Trichloroethylene 분해를 위한 혼합 메탄자화균 생물막 반응기의 초기 조건)

  • Lee, Moo-Yeal;Yang, Ji-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.971-980
    • /
    • 2000
  • Mixed methanotrophs (MM) secreting soluble methane monooxygenase(sMMO) were immobilized on celite R-635 to degrade trichloroethylene(TCE) in methanotrophic consortium biofilm reactor(MCBR) system. Further neutralization of celite R-635 was not needed for immobilization because effluent pH was stabilized at neutral after 4 hour washing. It took 130 days to develop biofilm on celite R-635 and the color of the celite changed gradually from white to red. After biofilm developed, influent methane and oxygen were decreased from 2.5~4 and 8~10 ppm to 0.5~1 and 1~2 ppm, respectively, With influent 2 ppm of TCE and 10 hours of retention time, 79.9% of TCE was degraded in the MCBR system.

  • PDF

Analysis of Three-Dimensional Profile of Bacterial Colony and Visualization of Fluidic Biofilm Using Fluorescent Microbeads (형광 미세입자를 이용한 박테리아 군집의 3차원 형상 분석 및 유동성 생물막의 가시화)

  • Kim, Kyung-Hoon;Park, Eun-Jung;Kim, Jung-Kyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1119-1126
    • /
    • 2012
  • The collective behavior of bacteria plays an important role in biofilm development. In this study, the fluidic properties of biofilms formed in Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) colonies were compared by visualizing 200-nm fluorescent beads that were initially embedded in an agar plate and distributed spontaneously on the upper surface of the growing colonies. We conducted experiments to measure the three-dimensional profile of the E. coli colony using fluorescent microbeads that did not flow in the colony. Vortical flow patterns near the edge of the B. subtilis colony were observed clearly by tracking the movement of the beads in the biofilm of the colony. The present study should be the first step toward determining the effect of fluidic biofilms on the growth and swarming dynamics of bacteria.

Development of Candida albicans Biofilms Is Diminished by Paeonia lactiflora via Obstruction of Cell Adhesion and Cell Lysis

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.482-490
    • /
    • 2018
  • Candida albicans infections are often problematic to treat owing to antifungal resistance, as such infections are mostly associated with biofilms. The ability of C. albicans to switch from a budding yeast to filamentous hyphae and to adhere to host cells or various surfaces supports biofilm formation. Previously, the ethanol extract from Paeonia lactiflora was reported to inhibit cell wall synthesis and cause depolarization and permeabilization of the cell membrane in C. albicans. In this study, the P. lactiflora extract was found to significantly reduce the initial stage of C. albicans biofilms from 12 clinical isolates by 38.4%. Thus, to assess the action mechanism, the effect of the P. lactiflora extract on the adhesion of C. albicans cells to polystyrene and germ tube formation was investigated using a microscopic analysis. The density of the adherent cells was diminished following incubation with the P. lactiflora extract in an acidic medium. Additionally, the P. lactiflora-treated C. albicans cells were mostly composed of less virulent pseudohyphae, and ruptured debris was found in the serum-containing medium. A quantitative real-time PCR analysis indicated that P. lactiflora downregulated the expression of C. albicans hypha-specific genes: ALS3 by 65% (p = 0.004), ECE1 by 34.9% (p = 0.001), HWP1 by 29.2% (p = 0.002), and SAP1 by 37.5% (p = 0.001), matching the microscopic analysis of the P. lactiflora action on biofilm formation. Therefore, the current findings demonstrate that the P. lactiflora ethanol extract is effective in inhibiting C. albicans biofilms in vitro, suggesting its therapeutic potential for the treatment of biofilm-associated infections.

Bacterial Communities of Biofilms Sampled from Seepage Groundwater Contaminated with Petroleum Oil

  • CHO WONSIL;LEE EUN-HEE;SHIM EUN-HWA;KIM JAISOO;RYU HEE WOOK;CHO KYUNG-SUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.952-964
    • /
    • 2005
  • The diesel-degrading activities of biofilms sampled from petroleum-contaminated groundwaters in urban subway drainage systems were examined in liquid cultures, and the microbial populations of the biofilms were characterized by denaturing gel gradient electrophoresis (DGGE) and 16S rDNA sequence analysis. Biofilm samples derived from two sites (19 K and 20 K) at subway Station N and Station I could degrade around $80\%$ of applied diesel within 20 and 40 days, respectively, at $15^{\circ}C$, and these results were strongly correlated with the growth patterns of the biofilms. The closest phylogenetic neighbor of a dominant component in the 19 K biofilm was Thiothrix fructosivorans strain Q ($100\%$ similarity). Four dominant strains in the 20 K biofilm were closely related to Thiothrix fructosivorans strain Q ($100\%$ similarity), Thiothrix sp. CC-5 ($100\%$ similarity), Sphaerotilus sp. IF14 ($99\%$ similarity), and Cytophaga-Flexibacter-Bacterioides (CFB) group bacterium RW262 ($98\%$ similarity). Three dominant members in the Station I biofilms were very similar to uncultured Cytophagales clone CRE-PA82 ($91\%$ similarity), Pseudomonas sp. WDL5 ($97\%$ similarity), and uncultured CFB group bacterium LCK-64 ($94\%$ similarity). The microbial components of the biofilms differed depending on the sampling site. This is the first report on the isolation of clones highly similar to Thiothrix fructosivorans and Thiothrix sp. from biofilms in petroleum-polluted groundwaters, and the first evidence that these organisms may play major roles in petroleum degradation and/or biofilm-development.

The Dynamic Characteristics of a Two Phase Fluidized Beds (이상 유동층 반응기의 동특성에 관하여)

  • Suh, Myung-Gyo;Suh, Jung-Ho;Kang, Jun-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.210-213
    • /
    • 1993
  • The purpose of this research was to investigate fluidization characteristics of three solid particles, correlations between voidage and superficial velocity. The inside diameter of a column did not affect the fraction void-superficial velocity relationship for fluidization systems which was obtained as follows: $\frac{u}{u_t}={\varepsilon}^{3.703}----Sea\;Sand$ $\frac{u}{u_t}={\varepsilon}^{3.5665}----long\;Exchange$ $\frac{u}{u_t}={\varepsilon}^{4.066}----GAC$ And the sphericial type media is good for fluidized systems as it maintains low voidage. Actually, if biofilm attached to media (bioparticle), the density became lower in fluidized bed biofilm reactor. Therefore, as the density of media become higher, it is easy to maintain fluidized beds.

  • PDF

Penicillin Fermentation using a Carrier-supported Mycelial Growth (담체에 고정화된 균사체 증식을 이용한 페니실린의 발효)

  • Park, Sang K.;Kim, Jung H.;Park, Young H.
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.273-278
    • /
    • 1985
  • A carrier-supported mycelial growth of Penicillium chrysogenum was applied to penicillin fermentation system. Among various materials tested, celite was found to be most effective for both spore adsorption and bioparticle development. Hyphal growth through pore matrices of the material showed strong anchorages and provided highly stable biofilm growths. When 5-10% celite was employed, both cell growth and penicillin production were observed to increase significantly comparing to the dispersed filamentous growth. Specific productivity of penicillin, however. was found to be kept almost constant at a value of 1,900 unit/g cell/hr. A semicontinuous fermentation in a fluidized-bed reactor. using the tarrier-supported biofilm growth, was conducted successfully although free mycelia appeared in the late phase of the fermentation made the reactor operation difficult. Control of the size of bioparticles was considered as a major operating factor to maintain the reactor productivity at a desired level.

  • PDF

Undecanoic Acid, Lauric Acid, and N-Tridecanoic Acid Inhibit Escherichia coli Persistence and Biofilm Formation

  • Jin, Xing;Zhou, Jiacheng;Richey, Gabriella;Wang, Mengya;Choi Hong, Sung Min;Hong, Seok Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.130-136
    • /
    • 2021
  • Persister cell formation and biofilms of pathogens are extensively involved in the development of chronic infectious diseases. Eradicating persister cells is challenging, owing to their tolerance to conventional antibiotics, which cannot kill cells in a metabolically dormant state. A high frequency of persisters in biofilms makes inactivating biofilm cells more difficult, because the biofilm matrix inhibits antibiotic penetration. Fatty acids may be promising candidates as antipersister or antibiofilm agents, because some fatty acids exhibit antimicrobial effects. We previously reported that fatty acid ethyl esters effectively inhibit Escherichia coli persister formation by regulating an antitoxin. In this study, we screened a fatty acid library consisting of 65 different fatty acid molecules for altered persister formation. We found that undecanoic acid, lauric acid, and N-tridecanoic acid inhibited E. coli BW25113 persister cell formation by 25-, 58-, and 44-fold, respectively. Similarly, these fatty acids repressed persisters of enterohemorrhagic E. coli EDL933. These fatty acids were all medium-chain saturated forms. Furthermore, the fatty acids repressed Enterohemorrhagic E. coli (EHEC) biofilm formation (for example, by 8-fold for lauric acid) without having antimicrobial activity. This study demonstrates that medium-chain saturated fatty acids can serve as antipersister and antibiofilm agents that may be applied to treat bacterial infections.

Antibiofilm activity of polyethylene glycol-quercetin nanoparticles-loaded gelatin-N,O-carboxymethyl chitosan composite nanogels against Staphylococcus epidermidis

  • Wanhe Luo;Yongtao Jiang;Jinhuan Liu;Beibei Sun;Xiuge Gao;Samah Attia Algharib;Dawei Guo;Jie Wei;Yurong Wei
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.30.1-30.16
    • /
    • 2024
  • Background: Biofilms, such as those from Staphylococcus epidermidis, are generally insensitive to traditional antimicrobial agents, making it difficult to inhibit their formation. Although quercetin has excellent antibiofilm effects, its clinical applications are limited by the lack of sustained and targeted release at the site of S. epidermidis infection. Objectives: Polyethylene glycol-quercetin nanoparticles (PQ-NPs)-loaded gelatin-N,O-carboxymethyl chitosan (N,O-CMCS) composite nanogels were prepared and assessed for the on-demand release potential for reducing S. epidermidis biofilm formation. Methods: The formation mechanism, physicochemical characterization, and antibiofilm activity of PQ-nanogels against S. epidermidis were studied. Results: Physicochemical characterization confirmed that PQ-nanogels had been prepared by the electrostatic interactions between gelatin and N,O-CMCS with sodium tripolyphosphate. The PQ-nanogels exhibited obvious pH and gelatinase-responsive to achieve on-demand release in the micro-environment (pH 5.5 and gelatinase) of S. epidermidis. In addition, PQ-nanogels had excellent antibiofilm activity, and the potential antibiofilm mechanism may enhance its antibiofilm activity by reducing its relative biofilm formation, surface hydrophobicity, exopolysaccharides production, and eDNA production. Conclusions: This study will guide the development of the dual responsiveness (pH and gelatinase) of nanogels to achieve on-demand release for reducing S. epidermidis biofilm formation.