• Title/Summary/Keyword: biofilm

Search Result 890, Processing Time 0.027 seconds

Antimicrobial synergism of Camellia sinensis-isolated five phenol compounds and R-(-)-carvone against mutans streptococci (다엽의 5가지 페놀성분과 R-(-)-carvone의 치아우식균 Mutans Streptococci에 대한 항균력 상승효과)

  • Song, Ok-Hee;Kang, Ok-Hua;Mun, Su-Hyun;Kim, Min-Chul;Han, Young-Sun;Choi, Sung-Hoon;Lee, Young-Seob;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.7-13
    • /
    • 2016
  • Objectives : Camellia sinensis (Theaceae) possesses a various beneficial effects such as free radical-scavenging, inactivation of urokinase in cancer cell proliferation, antibacterial, and hypotensive. Dental caries is one of the most common oral infectious disease in a human. Oral microorganisms play a significant role in the etiology of dental caries. An aberration to this ecology due to dietary habits, improper oral hygiene or systemic factors lead to an increase in cariogenic microorganisms. Cariogenic microorganisms like Streptococcus mutans and Streptococcus sobrinus encourage the accumulation and adherence of plaque biofilm by metabolizing sucrose into glucans. The purpose of this study was to investigate the antimicrobial activity of phenolic compounds of Camellia sinensis and R-carvone, monoterpenes, is can be found naturally in numerous essential oils, on Streptococcus mutans and Streptococcus sobrinus .Methods : The antimicrobial activity of these compounds was determined by the broth microdilution method and checkerboard dilution assay to investigate the potential synergistic effects of each five compounds of Camellia sinensis (C. sinensis) and R-carvone.Results : C. sinensis-isolated compounds and R-carvone were determined with MIC of more than 1,000 ㎍/mL. However, the combination test showed significant synergism against S. mutans and S. sobrinus, implicated in the lowered MICs.Conclusions : These results suggest that combinatory application of phenolic five compounds (theophyllin, l-theanine, epicatechin, epicatechin gallate, and caffeine) from C. sinensis and R-carvone has a potential synergistic effect and thus may be useful as a mouthrinse in helping control cariogenic microorganism.

Odorous Gas Removal in Biofilter with Powdered Activated Carbon and Zeolite Coated Polyurethane Foam (분말활성탄 및 제올라이트 담지 폴리우레탄 담체를 이용한 바이오필터에서의 악취가스 제거)

  • Lee, Soo-Chul;Kim, Dong-Jin
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.209-215
    • /
    • 2012
  • The performance and removal efficiencies of a pilot scale biofilter were estimated by using ammonia and hydrogen sulfide as the odorous gases. Expanded polyurethane foam coated with powdered activated carbon and zeolite was used as a biofilm supporting medium in the biofilter. Odorous gases from the sludge thickener of a municipal wastewater treatment plant were treated in the biofilter for 10 months and the inlet ammonia and hydrogen sulfide concentrations were 0.1-1.5 and 2-20 ppmv, respectively. The removal efficiencies reached about 100% at the empty bed retention time (EBRT) of 3.6-5 seconds except for the adaptation periods. The pressure drop of the biofilter caused by the gas flow was also low that the maximum attained was 31 mm $H_2O$ during the operation. Its stability was confirmed in the long term due to the fact that the biofilter and the polyurethane medium had a minimum plugging and compression. The microbial community on the medium is critical for the performance of the biofilter especially the distribution of ammonia oxidizing bacteria (AOB) and sulfur oxidizing bacteria (SOB). The distribution of Nitrosomonas sp. (AOB) and Thiobacillus ferroxidans (SOB) was confirmed by FISH (fluorescence in situ hybridization) analysis. The longer the operation time, the more microbial population observed. Also, the medium close to the gas inlet had more microbial population than the medium at the gas outlet of the biofilter.

Homology Modeling and Characterization of Oligoalginate Lyase from the Alginolytic Marine Bacterium Sphingomonas sp. Strain MJ-3 (알긴산을 분해하는 해양미생물인 Sphingomonas sp. MJ-3 균주의 올리고알긴산 분해효소의 상동성 모델링 및 특성연구)

  • Kim, Hee Sook
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.121-129
    • /
    • 2015
  • Alginates are found in marine brown seaweeds and in extracellular biofilms secreted by some bacteria. Previously, we reported an oligoalginate lyase from Sphingomonas sp. MJ-3 (MJ3-Oal) that had an exolytic activity and protein sequence homology with endolytic polymannuronate (polyM) lyase in the N-terminal region. In this study, the MJ3-Oal was tested for both exolytic and endolytic activity by homology modeling using the crystal structure of Alg17c from Saccharophagus degradans 2-40T. The tyrosine residue at the $426^{th}$ position, which possibly formed a hydrogen bond with the substrate, was mutated to phenylalanine. The FPLC profiles showed that MJ3-Oal degraded alginate quickly to monomers as a final product through the oligmers, whereas the Tyr426Phe mutant showed only exolytic alginate lyase activity. $^1H$-NMR spectra also showed that MJ3-Oal degraded the endoglycosidic bond of polyM and polyMG (polymannuronate-guluronate) blocks. These results indicate that oligoalginate lyase from Sphingomonas sp. MJ-3 probably catalyzes the degradation of both exo- and endo-glycosidic bonds of alginate.

Modeling Virtual Ecosystems that Consist of Artificial Organisms and Their Environment (인공생명체와 그들을 둘러싸는 환경으로 구성 되어지는 가상생태계 모델링)

  • Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.122-131
    • /
    • 2010
  • This paper introduces the concept of a virtual ecosystem and reports the following three mathematical approaches that could be widely used to construct such an ecosystem, along with examples: (1) a molecular dynamics simulation approach for animal flocking behavior, (2) a stochastic lattice model approach for termite colony behavior, and (3) a rule-based cellular automata approach for biofilm growth. The ecosystem considered in this study consists of artificial organisms and their environment. Each organism in the ecosystem is an agent that interacts autonomously with the dynamic environment, including the other organisms within it. The three types of model were successful to account for each corresponding ecosystem. In order to accurately mimic a natural ecosystem, a virtual ecosystem needs to take many ecological variables into account. However, doing so is likely to introduce excess complexity and nonlinearity in the analysis of the virtual ecosystem's dynamics. Nonetheless, the development of a virtual ecosystem is important, because it can provide possible explanations for various phenomena such as environmental disturbances and disasters, and can also give insights into ecological functions from an individual to a community level from a synthetic viewpoint. As an example of how lower and higher levels in an ecosystem can be connected, this paper also briefly discusses the application of the second model to the simulation of a termite ecosystem and the influence of climate change on the termite ecosystem.

Pre-treatment of River Water Using Biological Aerated Filtration (호기성 생물여과 공정을 이용한 하천수 전처리)

  • Choi, Dong-Ho;Choi, Hyung-Joo;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.276-285
    • /
    • 2006
  • When polluted stream water was treated with biological aerated filter(BAF) in pilot plant, all operation with 90, 60, 45 and 30 min of EBCT at fixed $0.1m^3air/m^2min$ of aeration showed 80% or higher treatment efficiency of particle materials(SS, turbidity and Chl.-a) and 85% or higher efficiency of ammonia nitrogen removal. It was thought that, in case of BOD, biological stability may sufficiently be assured with BAF because grade III or IV inflow water was changed to grade I for outflow water. In case of $COD_{Mn}$, about 60% of removal efficiency was found. When the mechanism of the result was investigated, about 30% of COD materials was produced by algae clogged in the reactor. There was almost no biological decomposition because specific substrate utilization rate of algogenic organic materials were $0.0245mg{\cdot}COD_{Mn}/mg{\cdot}VSS{\cdot}day$, thus partial backwashing(washing the media in 1 m upper of the reactor once a day) was required. It is thought that elevation of removal rate about 10% of $COD_{Mn}$ and 5.5% of $BOD_5$ could be obtained with partial backwashing resulting in assurance of biologically more stable raw water and that saving backwashing water may be significant.

Changes of Nitrifying Bacterial Populations in Anaerobic-Anoxic-Oxic Reactors (혐기-무산소-호기 반응조내 질화세균군의 변화)

  • Park, Jong-Woong;Lee, Young-Ok;Go, Jun-Heok;Ra, Won-Sik;Lim, Uk-Min;Park, Ji-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.138-144
    • /
    • 2005
  • This study was carried out to investigate the changes of nitrifying bacterial populations including Nitrosomonas sp. and Nitrobacter sp. in $A^2/O$ pilot plant with the configuration of anaerobic-anoxic-oxic reactors. The suspended nitrifying bacterial populations in mixed liquor and those of attached populations on granular carrier surface made by molded waste tire were analyzed by Fluorescent in situ Hybridization(FISH) method. The nitrification rate of a pilot plant showed the value of $1.97{\sim}2.98\;mg\;N/g$ MLVSS hr. The ratios of suspended ammonia oxidizer including Nitrosomonas sp. (NSO) to total bacteria in each reactor were oxic < anoxic < anaerobic. On the contrary, the ratios of suspended nitrite oxidizer including Nitrobacter sp. (NIT) were anaerobic < anoxic < oxic. The thickness, dry density and mass of the attached biomass on granular carriers were $180{\sim}188\;{\mu}m$, $38.5{\sim}43.9\;mg/cm^3$, $29.4{\sim}32.5\;mg/g$, respectively. Also, the ratios of attached nitrifier to total bacteria on granular carriers were similar regardless of ammonia/nitrite-oxidizer (NSO; 3.2%, NIT; 2.8%) and very low compared to those(NSO; $22.8{\sim}28.4%$, NIT; $17{\sim}26%$) of suspended nitrifier.

Kinetics of Photocatalytic Reactions with Porous Carriers Coated with Nano-$TiO_2$ Particles (나노-$TiO_2$ 입자로 코팅된 다공성 담체의 광촉매 반응에 관한 동력학)

  • Park, Seong-Jun;Rittmann, Bruce E.;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.927-932
    • /
    • 2009
  • Toxic and recalcitrant organic pollutants in wastewaters can be effectively treated when advanced oxidation and biodegradation are combined, ideally with intimate coupling, in which both processes occur simultaneously in the same system. One means to achieve intimate coupling is to coat nanoscale $TiO_2$ on the outside of macroporous biofilm carriers. This study investigated the kinetics of photocatalysis with $TiO_2$-coated porous carriers. The carriers were made of polyvinyl alcohol (PVA) and coated with $TiO_2$ using a low-temperature sol-gel process. The $TiO_2$-coated carriers catalyzed the oxidation of methylene blue (MB) effectively under irradiation of UV light. The overall reaction rate with adsorption and photolysis saturated at high MB concentration, and approached the adsorption rate, which was first order for all MB concent rations. This result indicates that adsorbed MB may have slowed photocatalysis by blocking active sites for photocatalysis. The overall kinetics could be described by a quasi-Langmuir model. The estimated maximum specific (per unit mass of $TiO_2$) transformation rate of MB by the $TiO_2$-coated carriers was four times larger than that obtained from slurry-$TiO_2$ reactors. This observation demonstrated that the $TiO_2$ present as a coating on the carriers maintained high efficiency for transforming recalcitrant organic matter via photocatalysis. These findings serve as a foundation for advancement of an intimate coupling of photocatalysis to biodegradation.

Development of New Materials of Ginseng by Nanoparticles

  • Yang, Deok Chun;Mathiyalagan, Ramya;Yang, Dong Uk;Perez, Zuly Elizabeth Jimenez;Hurh, Joon;Ahn, Jong Chan
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.3-3
    • /
    • 2018
  • For centuries, Panax ginseng Meyer (Korean ginseng) has been widely used as a medicinal herb in Korea, China, and Japan. Ginsenosides are a class of triterpene saponins and recognized as the bioactive components in Korean ginseng. Ginsenosides, which can be classified broadly as protopanaxadiols (PPD), protopanaxatriols (PPT), and oleanolic acids, have been shown to flaunt a vast array of pharmacological activities such as immune-modulatory, anti-inflammatory, anti-tumor, anti-diabetic, and antioxidant effects. In recent years, a number of ginseng and ginsenoside researches have increasingly gained wide attention owing to its unique pharmacological properties. Although good efficacies of ginsenosides have been reported, lack of target specific delivery into tumor sites, low solubility, and low bioavailability due to modifications in gastro-intestinal environments limit their biomedical application in clinical trials. As a result to this major challenge, nanotechnology and drug delivery techniques play a significant role to solve this problematic issue. Thus, we reported the preparation of poly-ethylene glycol (PEG) and glycol chitosan (GC) functionalized to ginsenoside (Compound K and PPD) conjugates via hydrolysable ester bonds with improved aqueous solubility and pH-dependent drug release. In vitro cytotoxicity assays revealed that PEG-CK, and PPD-CK conjugates exhibited lower cytotoxicity compared to bare CK and PPD in HT29 cells. However, GC-CK conjugates exhibited higher and similar cytotoxicity in HT29 and HepG2 cells. Furthermore, GC-CK-treated RAW264.7 cells did not exhibit significant cell death at higher concentration of treatment which supports the biocompatibility of the polymer conjugates. They also inhibited nitric oxide production in lipopolysaccharide (LPS)-induced RAW64.7 cells. In addition to polymer-ginsenoside conjugates, silver (AgNps) and gold nanoparticles (AuNps) have been successfully synthesized by green chemistry using different m. The biosynthesized nanoparticles demonstrated antimicrobial efficacy, anticancer, anti-inflammatory, antioxidant activity, biofilm inhibition, and anticoagulant effect. Special interest on the effective delivery methods of ginsenoside to treatment sites is the focus of metal nanoparticle research.In short, nano-sizing of ginsenoside results in an increased water solubility and bioavailability. The use of nano-sized ginsenoside and P. ginseng mediated metallic nanoparticles is expected to be effective on medical platform against various diseases in the future.

  • PDF

Antimicrobial Effects of Ethanol Extract of Yongdamgosam-hwan against Streptococcus mutans (용담고삼환(龍膽苦參丸) 에탄올 추출물의 Streptococcus mutans에 대한 항균활성에 관한 연구)

  • Yun, Yong-Il;Lee, Hae-Soo;Jung, Min-Ji;You, Seong-Il;Song, Yung-Sun;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.30 no.6
    • /
    • pp.55-61
    • /
    • 2015
  • Objectives : Yongdamgosam-hwan(YGH) has been used as a traditional medicine from old times for antiinflammatory effects. Streptococcus mutans(S. mutans) is known as a prime bacteria responsible for causing caries by forming a biofilm referred to as dental plaque on the tooth surface. But antimicrobial activity of YGH with dental disease is not sufficiently understood. This study was designed to investigate the effects of YGH ethanol extract on antimicrobial effect against Streptococcus mutans.Methods : The antimicrobial effect of YGH ethanol extract was assessed by the paper disk diffusion method and optical density method to determine minimum inhibition concentration(MIC), also observed by fractional inhibitory concentration index(FICI) and time-kill assay to figure out the synergic effect on the combination of YGH ethanol extract with antibiotics.Results : The YGH ethanol extract 500 μg was 7.5-8.5 mm diameter of clear zone of inhibition against Streptococcus mutans in a concentration-dependent manner and MIC was 250 μg/mL. The administration of the ethanol extract in combination with gentamicin and streptomycin induced a reduction of ≥4-8-fold in all tested bacteria. Furthermore, time-kill study was found that a combination of YGH ethanol extract with oxacillin and streptomycin produced a more rapid decrease in the concentration of bacteria CFU/mL than the YGH ethanol extract or antibiotics alone.Conclusions : As a result, the YGH ethanol extract has good antimicrobial effects. And the results suggest that YGH could be employed as a natural antibacterial agent in dental care products.

Molecular and Ecological Analyses of Microbial Community Structures in Biofilms of a Full-Scale Aerated Up-Flow Biobead Process

  • Ju, Dong-Hun;Choi, Min-Kyung;Ahn, Jae-Hyung;Kim, Mi-Hwa;Cho, Jae-Chang;Kim, Tae-Sung;Kim, Tae-San;Seong, Chi-Nam;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.253-261
    • /
    • 2007
  • Molecular and cultivation techniques were used to characterize the bacterial communities of biobead reactor biofilms in a sewage treatment plant to which an Aerated Up-Flow Biobead process was applied. With this biobead process, the monthly average values of various chemical parameters in the effluent were generally kept under the regulation limits of the effluent quality of the sewage treatment plant during the operation period. Most probable number (MPN) analysis revealed that the population of denitrifying bacteria was abundant in the biobead #1 reactor, denitrifying and nitrifying bacteria coexisted in the biobead #2 reactor, and nitrifying bacteria prevailed over denitrifying bacteria in the biobead #3 reactor. The results of the MPN test suggested that the biobead #2 reactor was a transition zone leading to acclimated nitrifying biofilms in the biobead #3 reactor. Phylogenetic analysis of 16S rDNA sequences cloned from biofilms showed that the biobead #1 reactor, which received a high organic loading rate, had much diverse microorganisms, whereas the biobead #2 and #3 reactors were dominated by the members of Proteobacteria. DGGE analysis with the ammonia monooxygenase (amoA) gene supported the observation from the MPN test that the biofilms of September were fully developed and specialized for nitrification in the biobead reactor #3. All of the DNA sequences of the amoA DGGE bands were very similar to the sequence of the amoA gene of Nitrosomonas species, the presence of which is typical in the biological aerated filters. The results of this study showed that organic and inorganic nutrients were efficiently removed by both denitrifying microbial populations in the anaerobic tank and heterotrophic and nitrifying bacterial biofilms well-formed in the three functional biobead reactors in the Aerated Up-Flow Biobead process.