DOI QR코드

DOI QR Code

Odorous Gas Removal in Biofilter with Powdered Activated Carbon and Zeolite Coated Polyurethane Foam

분말활성탄 및 제올라이트 담지 폴리우레탄 담체를 이용한 바이오필터에서의 악취가스 제거

  • Received : 2012.04.19
  • Accepted : 2012.06.08
  • Published : 2012.06.30

Abstract

The performance and removal efficiencies of a pilot scale biofilter were estimated by using ammonia and hydrogen sulfide as the odorous gases. Expanded polyurethane foam coated with powdered activated carbon and zeolite was used as a biofilm supporting medium in the biofilter. Odorous gases from the sludge thickener of a municipal wastewater treatment plant were treated in the biofilter for 10 months and the inlet ammonia and hydrogen sulfide concentrations were 0.1-1.5 and 2-20 ppmv, respectively. The removal efficiencies reached about 100% at the empty bed retention time (EBRT) of 3.6-5 seconds except for the adaptation periods. The pressure drop of the biofilter caused by the gas flow was also low that the maximum attained was 31 mm $H_2O$ during the operation. Its stability was confirmed in the long term due to the fact that the biofilter and the polyurethane medium had a minimum plugging and compression. The microbial community on the medium is critical for the performance of the biofilter especially the distribution of ammonia oxidizing bacteria (AOB) and sulfur oxidizing bacteria (SOB). The distribution of Nitrosomonas sp. (AOB) and Thiobacillus ferroxidans (SOB) was confirmed by FISH (fluorescence in situ hybridization) analysis. The longer the operation time, the more microbial population observed. Also, the medium close to the gas inlet had more microbial population than the medium at the gas outlet of the biofilter.

분말활성탄과 제올라이트가 담지된 폴리우레탄 담체를 충진한 파일롯 규모의 바이오필터를 이용하여 암모니아와 황화수소의 처리 성능을 평가하였다. 약 10개월간 하수처리장 슬러지 농축조에서 발생하는 악취를 대상으로 바이오필터 유입 암모니아 농도는 0.1~1.5 $ppm_v$, 황화수소 농도는 2~20 $ppm_v$ 범위에서 운전되었다. 바이오필터의 공탑체류시간 3.6~5초 범위에서 초기 순응기간을 제외하고는 거의 모든 경우 100%에 가까운 악취 제거율을 보여주었다. 바이오필터에서의 기체흐름에 의한 압력손실도 매우 낮아 10개월 동안 최대 31 mm $H_2O$ 정도의 차압이 발생하였다. 이것은 본 연구에 이용된 바이오필터의 막힘이나 담체의 압착 현상이 거의 일어나지 않아 장기간의 운전에도 안정성을 확인할 수 있었다. 담체에 부착하여 서식하는 미생물군집은 바이오필터의 처리 성능에 중요한 영향을 미치는데 특히 암모니아나 황화수소를 제거하기 위한 암모니아 산화균과 황산화균의 분포가 중요하다. FISH (Fluorescence in Situ Hybridization) 방법으로 확인한 결과 질산화를 주관하는 암모니아 산화균인 Nitrosomonas sp.와 황산화균인 Thiobacillus ferroxidans가 검출되었다. 또한 바이오필터의 운전기간이 길어질수록, 그리고 악취의 유입부분이 유출부분에 비해 미생물 분포량이 더 많음을 확인하였다.

Keywords

References

  1. Goldstein, N., "Odor Control Experience: Lessons from the Biofilter," Biocycle, 37, 70-75 (1996).
  2. Victor, F. M., and Webster, T., "Treatment of Gasoline Residuals by Granular Activated Carbon Based Biological Filtration," J. Environ. Sci. Health A., 30, 407-422 (1995).
  3. Christian, K., and Frederic T., "Waste Gas Biotreatment Technology," J. Chem. Technol. Biotechnol., 72, 303-319 (1998). https://doi.org/10.1002/(SICI)1097-4660(199808)72:4<303::AID-JCTB903>3.0.CO;2-Y
  4. McNevin, D., and Barford, J., "Biofiltration as An Odour Abatement Strategy," Biochem. Eng. J., 5, 231-242 (2000). https://doi.org/10.1016/S1369-703X(00)00064-4
  5. Gaudin, F., Andres, Y., and Cloirec, P.L., "Packing Material Formulation for Odorous Emission Biofiltration," Chemosphere, 70, 958-966 (2008). https://doi.org/10.1016/j.chemosphere.2007.08.014
  6. Kim, J. H., Park, D. W., and Kim, H. H., "Removal of VOCs Using Nylon 6 Fiber Media Immobilized with Microorganisms," Clean Technol., 9, 37-42 (2003).
  7. Lee, S. C., and Kim, D. J., "Porous Polymer Matrix Formed with Activated Carbon and Zeolite for Biofilter and Method for Preparing the Same," Korea Patent No. 10-0433644 (2004).
  8. Chung, Y-C., Huang, C., and Tseng, C-P., "Biological Elimination of $H_2S$ and $NH_3$ from Waste Gases by Biofilter Packed with Immobilized Heterotrophic Bacteria," Chemosphere, 43, 1043-1050 (2001). https://doi.org/10.1016/S0045-6535(00)00211-3
  9. Malhautier, L., Gracian, C., Roux, J-C., Fanlo, J-L., and Cloirec, P.L., "Biological Treatment Process of Air Loaded with An Ammonia and Hydrogen Sulfide Mixture," Chemosphere, 50, 145-153 (2003). https://doi.org/10.1016/S0045-6535(02)00395-8
  10. Chung, Y-C., Huang, C., Tseng, C-P., and Pan, J.R., "Biotreatment of $H_2S$- and $NH_3$-containing Waste Gases by Coimmobilized Cells Biofilter," Chemosphere, 41, 329-336 (2000). https://doi.org/10.1016/S0045-6535(99)00490-7
  11. Chung, Y-C., Lin, Y-Y., and Tseng, C-P., "Removal of High Concentration of $NH_3$ and Coexistent $H_2S$ by Biological Activated Carbon (BAC) Biotrickling Filter," Biores. Technol., 96, 1812-1820 (2005). https://doi.org/10.1016/j.biortech.2005.01.003
  12. Ho, K-L., Chung, Y-C., and Tseng, C-P., "Continuous Deodorization and Bacterial Community Analysis of a Biofilter Treating Nitrogen-containing Gases from Swine Waste Storage Pits," Biores. Technol., 99, 2757-2765 (2008). https://doi.org/10.1016/j.biortech.2007.06.041
  13. Ministry of Environment (Korea), Design Guidelines for Mechanical Facility of Municipal Wastewater Treatment Plant (2001).
  14. Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K-H., "Phylogenetic Oligonucleotide Probes for the Major Subclass of Proteobacteria: Problems and Solutions," Syst. Appl. Microbiol., 15, 593-600 (1992). https://doi.org/10.1016/S0723-2020(11)80121-9

Cited by

  1. Removal of Volatile Organic Compounds (VOCs) of Deodorant by Adding a Metal Oxide to the Essential Oils vol.22, pp.2, 2016, https://doi.org/10.7464/ksct.2016.22.2.096
  2. 에틸렌 가스 흡착 기능성 골판지 제조를 위한 기초연구 vol.48, pp.2, 2012, https://doi.org/10.7584/ktappi.2016.48.2.020
  3. 탄산나트륨 첨착섬유활성탄을 이용한 황화수소의 제거 vol.23, pp.1, 2012, https://doi.org/10.7464/ksct.2017.23.1.113
  4. 퇴비사의 효율적인 운영기술에 대한 고찰 vol.23, pp.4, 2017, https://doi.org/10.7464/ksct.2017.23.4.345
  5. Characteristic of odor from feed manufactory and evaluation of odor reduction efficiency using chemical scrubber vol.17, pp.4, 2012, https://doi.org/10.15250/joie.2018.17.4.389