• Title/Summary/Keyword: biodisc

Search Result 3, Processing Time 0.018 seconds

Biodisc Tissue-Engineered Using PLGA/DBP Hybrid Scaffold (DBP/PLGA 하이브리드 담체를 이용한 조직공학적 바이오 디스크 개발)

  • Ko, Youn-Kyung;Kim, Soon-Hee;Jeong, Jae-Soo;Ha, Hyun-Jung;Yoon, Sun-Jung;Rhee, John-M.;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.14-19
    • /
    • 2007
  • Demineralized bone particle (DBP) has been used as one of the powerful inducers of bone and cartilage tissue specialization. In this study, we fabricated DBP/PLGA scaffold for tissue engineered disc regeneration. We manufactured dual-structured scaffold to compose inner cylinder and outer doughnut similar to nature disc tissue. The DBP/PLGA scaffold was characterized by porosity, wettability, and water uptake ability. We isolated and cultured nucleus pulposus (NP) and annulus fibrosus (AF) cells from rabbit intervertebral disc. We seeded NP cells into the inner core of the hybrid scaffold and AF cells into the outer portion of it. Cellular viability and proliferation were assayed by 3-(4,5-dimethylthiazole-2-yl) -2,5- diphenyltetrazolium -bromide (MTT) test. PLGA and PLGA/DBP scaffolds were implanted in subcutaneous of athymic nude mouse to observe the formation of disc-like tissue in vivo. And then we observed change of morphology and hematoxylin and eosin (H&E). Formation of disc-like tissue was better DBP/PLGA hybrid scaffold than control. Specially, we confirmed that scaffold impregnated 20 and 40% DBP affected to proliferation of disc cell and formation of disc-like tissue.

Biodisc Regeneration Using Annulus Fibrosus Cell with Hyaluronic Acid Impregnated Small Intestinal Submucosa Sponge (히알루론산이 함유된 SIS 스폰지와 섬유륜세포를 이용한 디스크재생)

  • Hong, Hee-Kyung;Lee, Seon-Kyoung;Song, Yi-Seul;Kim, Dae-Sung;Eom, Shin;Kim, Hyoung-Eun;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.282-288
    • /
    • 2010
  • The porcine small intestinal submucosa (SIS) has been widely used as a biomaterial without immuno rejection responses and hyalunonic acid (HA) can be used as biocompatible materials to regenerate tissue. We developed the SIS sponge and HA loaded SIS sponges (SIS/HA) for the possibility of the application of the tissue engineering using annulus fibrosus (AF). SEM observation shows that SIS and SIS/HA sponges have interconnected and open pores. We demonstrated the presence of HA in SIS/HA sponge from C-O functional group observed by the FTIR analysis. In conclusion, we suggest that SIS/HA sponge may be useful to tissue engineering using AF cell. This may be due to the enhanced biocompatibility and higher water retention capacity of HA.

Evaluation of Various Scaffolds for Tissue Engineered Biodisc Using Annulus Fibrosus Cells (조직공학적 바이오디스크의 섬유륜 재생을 위한 지지체 특성평가)

  • Ha, Hyun-Jung;Kim, Soon-Hee;Yoon, Sun-Jung;Park, Sang-Wook;So, Jung-Won;Kim, Moon-Suk;Rhee, John-M.;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.26-30
    • /
    • 2008
  • This study was designed to investigate the effect of hybridization of synthetic/natural materials for annulus fibrosus (AF) tissue regeneration in vitro and in vivo. The synthetic/natural hybrid scaffolds were prepared using PLGA (poly (lactic-co-glycolic) acid), SIS (small intestinal submucosa) and DBP (demineralized bone particles). PLGA, PLGA/SIS(20%), PLGA/DBP(20%) and PLGA/SIS (10%)/DBP (10%) scaffold were manufactured by solvent casting/salt leaching method. Compressive strength was measured. Rabbit AF cells were isolated, cultured and seeded into experimental groups. Hydroxyproline production and DNA quantity of AP cells on each scaffold was measured at 2, 4 and 6 weeks after in vitro culture. Cell-scaffold composites were implanted subcutaneously into athymic mice. After 1,4 and 6 weeks postoperatively, specimens were taken and H&E, Safranin-O and type I collagen staining were carried out concerning formation of cartilagenous tissue. In vitro PLGA/SIS scaffold was evaluated for total collagen content (bydroryproline/DNA content) and PLGA scaffold was evaluated for compressive strength.