• 제목/요약/키워드: biodevice

검색결과 8건 처리시간 0.022초

Photoswitching Characteristics of Biodevice Consisting of Chlorophyll $\alpha$ Langmuir-Blodgett Film

  • Nam, Yun-Suk;Choi, Jeong-Woo;Lee, Won-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.1038-1042
    • /
    • 2004
  • The photoelectric responses of a biodevice consisting of chlorophyll $\alpha$ Langmuir-Blodgett film were investigated. Chlorophyll $\alpha$ Langmuir-Blodgett films were deposited onto ITO and Au coated glass. To confirm film formation, surface analysis of chlorophyll $\alpha$ Langmuir-Blodgett film was carried out by measurement using atomic force microscopy. The metal/insulator/metal structured biodevice was constructed by depositing aluminum onto the chlorophyll $\alpha$ Langmuir-Blodgett film surface. To investigate the photoelectric response, the current-voltage characteristic was measured by the conducting metal tip. The photoswitching function and transient photovoltage characteristics of the proposed device were measured by irradiation with Ar ion laser and $N_2$ pulse laser, respectively. This research suggested that the proposed biodevice consisting of chlorophyll $\alpha$ could be applied to the molecular scale biosensor and/or bioelectronic device.

Flexible Display Device with Organic Composite Film

  • Choi, Yang-Kyu;Yarimaga, Oktay;Kim, Tae-Won;Jung, Yun-Kyung;Park, Hyun-Gyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1233-1236
    • /
    • 2008
  • This study presents the fabrication process and display characteristics of a flexible organic polymer display device that consists of a thin substrate of Polyether Sulfone, a multilayer serpentine-type microheater array that is fabricated on the substrate, and a UV-sensitive polydiacetylene (PDA)-polyvinyl alcohol (PVA) composite film. A retention time of one second is achieved with cell sizes of $500{\mu}m$ and $700{\mu}m$ with cell-to-cell distances of $100{\mu}m$ and $200{\mu}m$, respectively.

  • PDF

바이오소자 기술 (Biodevice Technology)

  • 최정우;이범환
    • Korean Chemical Engineering Research
    • /
    • 제44권1호
    • /
    • pp.1-9
    • /
    • 2006
  • 생물체를 구성하는 세포의 기능과 구성요소 간 상호작용 메커니즘을 인공적으로 모방하여 바이오물질 박막으로 구성된 바이오소자는 의료 진단, 신약 스크리닝, 전자소자, 생물공정, 환경오염 물질 측정 등 다양한 산업 분야에 응용되고 있다. 단백질, DNA, 바이오색소, 세포 등의 생체물질을 칩 상에 고집적으로 배열하여 구성된 바이오 소자로서 바이오 전자소자(생물분자 광다이오드, 바이오 정보저장소자, 바이오 전기발광 소자), DNA칩, 단백질칩, 및 세포칩 등이 개발되어 오고 있다. 생체물질 고정화 기술, 마이크로 및 나노수준의 패터닝기술, 소자 구성 기술, 바이오 멤스 기술의 융합을 통해 바이오소자는 구현되며, 최근에는 나노기술의 적용에 의하여 나노바이오소자도 구현이 가능하다. 본 논문에서는 현재까지 개발된 다양한 바이오소자의 제작 기술과 응용에 대하여 소개하고 향후의 발전 방향에 대하여 다룬다.

Electrochemical Property of Immobilized Spinach Ferredoxin on HOPG Electrode

  • Nam Yun-Suk;Kim, You-Sung;Shin, Woon-Sup;Lee, Won-Hong;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.1043-1046
    • /
    • 2004
  • The stability and electrochemical properties of a self-assembled layer of spinach ferredoxin on a quartz substrate and on a highly oriented pyrolytic graphite electrode were investigated. To fabricate the ferredoxin self-assembly layer, dimyristoylphosphatidylcholine was first deposited onto a substrate for ferredoxin immobilization. Surface analysis of the ferredoxin layer was carried out by atomic force microscopy to verify the ferredoxin immobilization. To verify ferredoxin immobilization on the lipid layer and to confirm the maintenance of redox activity, absorption spectrum measurement was carried out. Finally, cyclic-voltammetry measurements were performed on the ferredoxin layers and the redox potentials were obtained. The redox potential of immobilized ferredoxin had a formal potential value of -540 mV. It is suggested that the redox-potential measurement of self-assembled ferredoxin molecules could be used to construct a biosensor and biodevice.

Nanotechnology in Biodevices

  • Choi, Jeong-Woo;Oh, Byung-Keun;Kim, Young-Kee;Min, Jun-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.5-14
    • /
    • 2007
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer. The technology has been applied to biodevices such as bioelectronics and biochips to improve their performances. Nanoparticles, such as gold (Au) nanoparticles, are the most widely used of the various other nanotechnologies for manipulation at the nanoscale as well as nanobiosensors. The immobilization of biomolecules is playing an increasingly important role in the development of biodevices with high performance. Nanopatteming technology, which is able to increase the density of chip arrays, offers several advantages, including cost lowering, simultaneous multicomponent detection, and the efficiency increase of biochemical reactions. A microftuidic system incorporated with control of nanoliter of fluids is also one of the main applications of nanotechnologies. This can be widely utilized in the various fields because it can reduce detection time due to tiny amounts of fluids, increase signal-to-noise ratio by nanoparticles in channel, and detect multi-targets simultaneously in one chamber. This article reviews nanotechnologies such as the application of nanoparticles for the detection of biomolecules, the immobilization of biomolecules at nanoscale, nanopatterning technologies, and the microfluidic system for molecular diagnosis.

트라이볼로지 관점에서의 그래핀 분자시뮬레이션 연구동향 (Review on Molecular Simulation of Graphene from a Tribological Perspective)

  • 김현준;정구현
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.55-63
    • /
    • 2020
  • Recently, graphene has attracted considerable attention owing to its unique electrical, optical, thermal, and mechanical properties. The broad spectrum of applications from optics, sensors, and electronics to biodevice have been proposed based on these properties. In particular, graphene has been proposed as a protective coating layer and solid lubricant for microdevices and nanodevices because of its high mechanical strength, chemical inertness, and low friction characteristics. During the past decade, extensive efforts have been made to explore the tribological characteristics of graphene under various conditions and to expand its applicability. In addition to the experimental approaches, the molecular simulations performed provide fundamental insights into the friction and wear characteristics of graphene resulting from molecular interactions. This work is a review of the studies conducted over the past decade on the tribological characteristics of graphene using molecular simulation. These studies demonstrate the principal mechanisms of the superlubricity of graphene and help clarify the influences of surface conditions on tribological behavior. In particular, the investigation of the effects of the number of layers, strength of adhesion to the substrate, surface roughness, and commensurability provides deeper insights into the tribological characteristics of graphene. These fundamental understandings can help elucidate the feasibility of graphene as a protective coating layer and solid lubricant for microdevices and nanodevices.