• Title/Summary/Keyword: biodegradable

Search Result 1,255, Processing Time 0.03 seconds

Enhancing social awareness of biodegradable fishing gears through technology marketing (생분해성 어구의 기술마케팅을 통한 사회적 인지도 제고 방안에 관한 연구)

  • Park, Seong-Wook;Kwon, Hyeok-Jun;Park, Seong-Kwae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.2
    • /
    • pp.153-163
    • /
    • 2011
  • The main purpose of this study is to understand the marketing approaches and strategies that are used to disseminating biodegradable fishing gears and distinguish the cognition and the non-cognition group's attitudes on the product. We used a technology acceptance model for analyzing product attributes and its impacts on fishers' purchase. The result of this research shows that 'perceived usefulness and easiness of use' have positive effect on 'purchase intention,' and then give impacts on 'purchase intention' for the entire respondents. For the cognitive respondents these factors have influence on 'attitude' but they do not affect 'purchase decision.' However, 'perceived usefulness and easiness of use' have much positive impact on 'purchase intention.' In the non-cognition group, the 'perceived intention' and 'company and country of manufacturers' have direct positive effect on 'purchase intention' through 'attitude' and also 'on 'purchase intention.' This research provides some meaningful policy implications on further development and technology marketing of biodegradable fishing gears.

Preparation of Biodegradable Poly(2-ethylhexylacrylate) as Oil Sorbers (흡유제인 생분해석 Poly(2-ethylhexylacrylate)의 제조)

  • Yoo, Su-Yong;Lee, Dong-Hwan;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.97-103
    • /
    • 2010
  • The biodegradable oil absorption resin was prepared by the suspension polymerization of the modified starch and 2-ethylhexyl acrylate (2-EHA). The highest oil-absorption capacity of B-PEHA prepared showed at the condition of the modified starch content of 10 g and ethyleneglycol dimethacrylate (EGDMA) of 0.133 wt%. Its maximum oil absorption capacity per g of oil absorber was chloroform 30.88 g, toluene 19.75 g, xylene 18.78 g, tetrahydofuran (THF) 15.96 g, octane 11.43 g, hexane 9.5 g diesel oil 12.80 g, and kerosene 13.79 g, respectively. The biodegradation of poly-2-ethylhexylacrylate (B-PEHA) determined by enzymatic hydrolysis showed approximately 17~20%. The results showed that the preparation of the biodegradable oil absorption resin is available using the modified starch.

A Study on the Biodegradable Properties of Polyesters associated with their Chemical Structures (폴리에스테르의 화학적 구조에 따른 생분해 거동에 관한 연구)

  • Woo, Je-Wan;Sohn, Myung-Ho;Cha, Hye-Young;Park, Yang-Sung;Chang, Kil Sang;Whang, Young-ae;Park, Sang-Soon
    • Clean Technology
    • /
    • v.8 no.4
    • /
    • pp.223-228
    • /
    • 2002
  • The biodegradable Properties of various polyester resins with different chemical structures have been studied by applying the controlled compost test and soil burial test. Celluose was taken as a fully biodegradable reference resin while PVC and PE were empolyed as non-biodegradable reference chains or ester group were rather easily degraded by hydrolase, meanwhile copolymer type polyesters which contain aromatic rings showed relatively low biodegradability. According to the results from controlled compost test, cellulose(the positive reference) showed 70.6% degradation after 45 days, whereas synthetic poly(butylene adipate-co-succinate), poly(butylene succinate), poly(butylene adipate-co-succinate-co-terephthalate) showed 44.0%, 32.0% and 23.4% degradation respectively. In this regard, it was concluded that biodegradable properties of polymers are largely dependant on the chemical structures constituting the polymers.

  • PDF

CLINICAL AND RADIOLOGICAL COMPARISON BETWEEN TITANIUM AND BIODEGRADABLE MINIPLATE MONOCORTICAL OSTEOSYNTHESIS IN MANDIBULAR ANGLE FRACTURES (Monocortical Osteosynthesis 이론에 따른 하악골 우각부 골절 수술시 Titanium miniplate와 Biodegradable miniplate의 임상적, 방사선학적 비교 연구)

  • Choi, Eun-Joo;Nam, Woong;Jung, Young-Soo;Kim, Ki-Ho;Kim, Hyung-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.3
    • /
    • pp.222-225
    • /
    • 2006
  • The treatment objective of mandibular fracture is a return to normal function. According to Champy, a rigid fixation of mandibular angle fracture is performed by using 4 or 6 holes titanium miniplates on the external oblique ridge of mandible. However, the limitations of metal plate such as hypersensitivity, interference with the cranio-facial growth of growing child, secondary bone resorption around the plate, foreign body reaction, declination of primary callus formation, and bone atrophy due to the lack of normal stress reaction of the bone have been reported. Recently, biodegradable miniplate has been introduced and used as an alternative to the metal plate despite its lower strength than that of the titanium plate and the side effect caused by the resorption in the body. In this study, 61 patients diagnosed as mandibular angle fracture and treated from Jan. 1998 to Dec. 2004 in our department have been reviewed. Metal plate fixation was used in 50 patients and biodegradable plate fixation in 11 patients on the external oblique ridge around the fractured mandibular angle according to the principle of monocortical osteosynthesis by Champy. We compared the incidence of side effects and the degree of bony union at the mandibular inferior border in two different fixation methods. In conclusion, we have found that one miniplate regardless of matter could provide enough strength to grasp bony fragments of the tension site and compress the inferior border of mandible without any complications.

High functional biodegradable card through annealing (어닐링을 통한 고기능성 생분해성 카드)

  • Sim, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.280-286
    • /
    • 2020
  • Cards made from PVC and PET materials do not oxidize or decompose readily, so they are generally incinerated or landfilled after use and cause pollution problems, such as environmental hormones and combustion gases during incineration. In addition, there is a problem of environmental pollution because they are discarded as semi-permanent refuse without being decomposed at landfill. This study attempted to solve this problem using polylactic acid (PLA), which is a representative biodegradable material as a substitute material that can solve the issues with these cards. On the other hand, when the thin card core sheet is made from only PLA material, the physical properties of the material are insufficient, such as the low temperature impact strength, high temperature stability, and poor bending properties, so its use is limited. To solve this problem, the compositional ratio of PLA was reviewed, and the optimal biodegradable compound composition was determined through an examination of the compositions, such as crystallization nucleating agents, additives, and nano compound technology. The high functionalization as a biodegradable card was verified through a laminating process using annealing technology.

Controlled Release Dosage Form of Narcotic Antagonist(I): Synthesis of Biodegradable Polyphosphazenes and Preparation and Release Characteristics of Naloxone Implant (마약길항제의 방출 제어형 제제 (제1보) : 생체분해성 polyphosphazenes의 합성과 나록손 이식제제의 제조 및 용출특성)

  • Park, Joo-Ae;Lee, Seung-Jin;Kim, Hyung-Kuk;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.2
    • /
    • pp.109-116
    • /
    • 1995
  • For the administration of narcotic antagonist with short half-life and low patient compliance, the sustained release system using biodegradable matrix is effective. Polyphosphazenes are of considerable interest as biodegradable matrix systems for controlled release of drugs. In this study, biodegradable polyphosphazenes available for the sustained release implantable device were synthesized, and their application was examined. Poly[dichlorophosphazene] was synthesized by solution polymerization method and confirmed with IR spectrum. Poly[bis(ethyl glycinate) phosphazene] and poly[ (diethyl glutamate)-co-(ethyl glycinate)phosphazene] were then produced by substitution of amino acid alkyl esters for chloride side groups. Using these polymers, the implantable devices of 1 mm thickness and $10{\times}10\;mm$ size containing naloxone hydrochloride were prepared and their release and degradation profiles were measured. In the case of poly[bis(ethyl glycinate)phosphazene] with swelling characteristics, degradation rate was slower than the release rate, showing that the release rate is partly dependent on the swelling rate. In contrast, the degradation rate of polyl[(diethyl glutamate)-co-(ethyl glycinate)phosphazene] matrix was identical with release rate of naloxone hydrochloride. On the basis of these results, it is expected that these polymers can be applied to sustained release implantable systems delivering narcotic antagonist.

  • PDF

Analysis of Growth and Antioxidant Compounds in Deodeok in Response to Mulching Materials (피복물 종류에 따른 더덕의 생육 및 항산화 물질 비교)

  • Yoon, Kyeong Kyu;Moon, Kyong Gon;Kim, Sang Un;Um, In Seok;Cho, Young Son;Kim, Young Guk;Rho, Il Rae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.3
    • /
    • pp.183-190
    • /
    • 2016
  • Background: This study determined the effects of mulching, an environment friendly organic cultivation method, on antioxidant compound contents and growth in Codonopsis lanceolata, commonly known as Deodeok. Methods and Results: C. lanceolata was treated by mulching with several different methods (a non-woven fabric, biodegradable film, or rice husks) and also treated with hand weeding. A non-treatment plot was used as a control. The growth and levels of weed control in C. lanceolata were better in plants cultivated under mulching treatments (non-woven fabric, biodegradable film, and rice husks) than in those under non-mulching treatments (hand weeding and non-treatment). The contents of antioxidant compounds, such as total flavonoids, phenolics, and anthocyanins, were highest under the biodegradable film treatment, followed by the non-woven fabric treatment, rice husks treatment hand weeding, and non-treatment. There were identifiable differences in DPPH and ABTS activity in comparison to antioxidant compound content by solvent fractions. Mulching treatments resulted in higher DPPH scavenging activity in water and ethyl ether fractions and ABTS scavenging activity in n-butanol fractions than in other fractions, as opposed to hand weeding and non-treatment groups, although total activity of DPPH and ABTS did not increase with mulching treatments. Conclusions: Mulching C. lanceolata with biodegradable film and non-woven fabric is an effective method for improving plant growth and inhibiting the occurrence of weeds as well as for increasing antioxidant compound content and altering antioxidant activity.

The Effect of Calcium-Phosphate Bovine Bone Powder on Guided Tissue Regeneration Using Biodegradable Membrane in Dogs (흡수성 차폐막으로 조직 유도 재생술시 골이식재가 성견 치주조직 재생에 미치는 영향)

  • Park, Jong-Beom;YIm, Sung-Bin;Chung, Chin-Hyung;Kim, Jong-Yeo
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.1
    • /
    • pp.167-180
    • /
    • 2000
  • The present study evaluated the effects of guided tissue regeneration using biodegradable membrane, with and without calcium-phosphate thin film coated deproteinated bone powder in beagle dogs. Contralateral fenestration defects(6 × 4 mm) were created 4 mm apical to the buccal alveolar crest on maxillary canine teeth in 5 beagle dogs. Ca-P thin film coated deproteinated bone powder was implanted into one randomly selected fenestration defect(experimental group). Biodegradable membranes were used to provide bilateral GTR. Tissue blocks including defects with overlying membranes and soft tissues were harvested following a four- & eight-week healing interval and prepared for histologic analysis. The results of this study were as follows. 1.......The regeneration of new bone, new periodontal ligament, and new cementum was occurred in experimental group more than control group. 2.......The collapse of biodegradable membranes into defects were showed in control group and the space for regeneration was diminished. In experimental group, the space was maintained without collapse by graft materials. 3........In experimental group, the graft materials were resorbed at 4 weeks after surgery and regeneration of bone surrounding graft materials was occurred at 8 weeks after surgery. 4.......Biodegradable membranes were not resorbed at 4 weeks and partial resorption was occurred at 8 weeks but the framework and the shape of membranes were maintained. No inflammation was showed at resorption. In conclusion, the results of the present study suggest that Ca-P thin film coated deproteinated bone powder has adjunctive effect to GTR in periodontal fenestration defects. Because it has osteoconductive property and prohibit collapse of membrane into defect, can promote regeneration of much new attachment apparatus.

  • PDF

Study on the biodegradable PLA sheet with multiple functionalities (복합기능성 생분해 PLA 시트에 관한 연구)

  • Lee, KyuDong;Kim, JongKyun;Lee, KyuDeug;Zun, Hyungdo;Kim, ChiGon;Yoon, KyungBae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.341-346
    • /
    • 2019
  • The study aims to provide a study on the mixing ratios and manufacturing methods of biodegradable PLA sheets for mid - term introduction, A 3-layer process was introduced to produce a multifunctional multi-layer structure sheet having improved heat resistance, impact resistance and transparency while having anti-fogging functionality as a biodegradable PLA sheet used for the purpose of anti-fogging function. Inner layer, core layer and outer layer were mixed and extruded. The inner layer and core layer were studied for a biodegradable PLA multi-layer sheet structure having inner hardness and high heat resistance and outer layer for imparting antifogging function. By applying the results of this study, plastic PLA properties and heat-resistant temperature can be improved to replace and expand plastics.

Characteristics of Landfill Gas Generation by Separate Landfill of Construction Waste and Mixed Landfill with Household Waste (건설폐기물 분리매립 및 생활폐기물과의 혼합매립에 의한 매립가스 발생 특성)

  • Jong-Keun, Park;Seung-Kyu, Chun
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2022
  • Landfill gas (LFG) generation characteristics in a construction waste landfill zone (block E) and mixed landfill zone (block A) were analyzed. During the period from October 2018 to April 2022, a total of 936×103 and 1,001×103 tons of waste were disposed in block E and block A, respectively. Out of this, 27.1% and 55.6% were biodegradable waste in block E and block A, respectively. The landfill masses of the two blocks were converted to be comparable. Then, the biodegradable waste and organic carbon were estimated by element analysis, biodegradable carbon by biochemical methane potential experiment (DC), and sulfate ion by acid decomposition. Results showed that biodegradable waste, organic carbon, biodegradable carbon, and sulfate ions in block A were 2.1, 1.6, 5.2, and 0.4 times greater than those in block E, respectively. The amount of LFG generated by block A was 4.8 times greater than that by block E. The average concentrations of methane (CH4) were 60.8% and 60.9% in block E and block A, respectively, which were unrelated to the nature of disposed waste. The average concentrations of hydrogen sulfide (H2S) were significantly high in block E (4,489 ppm) and block A (8,478 ppm). As the DC/SO42- of block E and block A were 0.35 and 4.56, respectively, increase in DC/SO42- caused increase in not only the total amount but also the concentration of H2S generated.