• Title/Summary/Keyword: bioconversion

Search Result 309, Processing Time 0.021 seconds

A Clinical Study to Evaluate the Efficacy and Safety of Hair Ampoules Containing Malva Verticillata Seed Extract in Subject with Alopecia (탈모 환자에서 동규자(冬葵子) 추출물을 함유하는 두피 앰플의 탈모 증상 완화 기능성 및 안전성을 평가하기 위한 임상적 연구)

  • Young-Chae Song;Bich-Euro Park;Kim Tae-Jun;Yong-Min Kim;Sang-Jun Lee;Su-Hyun Ahn;Chun-Mong Lee;Kwang-Sik Lee;Jung-No Lee;Hee-Taek Kim
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.37 no.2
    • /
    • pp.37-57
    • /
    • 2024
  • Objectives : The purpose of this study is to evaluate the efficacy and safety of hair Ampoules with Malva Verticillata Seed Extract in alopecia patients. Methods : This 24-week clinical study enrolled 70 patients with Alopecia. A series of clinical examinations, subjects were evaluated at 0, 8, 16 and 24-week, counting of the number of hairs on the crown, and subject survey after using the Ampoules. Results : The clinical evaluation showed a significantly difference (p<0.05) after 24 weeks of product use compared to the baseline in the change in hair count in the treatment group compared to the control group within and between groups. It showed greater improvement in the treatment group than in the control group in hair count, hair thickness, and hair loss symptoms in the top of the head and forehead. No severe adverse events were observed during the clinical trial. Counclusions : This suggests that this hair ampoules containing Malva Verticillata Seed Extract could help prevent hair loss in alopecia patients without inducing side effects.

Effects of Glucose and Acrylic acid Addition on the Biosynthesis of Medium-Chain-Length Polyhydroxyalkanoates by Pseudomonas chlororaphis HS21 from Plant Oils (Pseudomonas chlororaphis HS21에 의한 식물유로부터 Medium-Chain-Length Polyhydroxyalkanoates 생합성이 미치는 포도당 및 아크릴산의 첨가 효과)

  • Chung Moon-Gyu;Yun Hye Sun;Kim Hyung Woo;Nam Jin Sik;Chung Chung Wook;Rhee Young Ha
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.225-231
    • /
    • 2005
  • The characteristics of cell growth and medium-chain-length polyhydroxyalkanoate (MCL-PHA) biosynthesis of Pseudomonas chlororaphis HS21 were investigated using plant oils as the carbon substrate. The organism was efficiently capable of utilizing plant oils, such as palm oil, corn oil, and sunflower oil, as the sole carbon source for growth and MCL-PHA production. When palm oil (5 g/L) was used as the carbon source, the cell growth and MCL-PHA accumulation of this organism occurred simultaneously, and a high dry cell weight (2.4 g/L) and MCL-PHA ($40.2\;mol{\%}$ of dry cell weight) was achieved after 30 hr of batch-fermentation. The repeating unit in the MCL-PHA produced from palm oil composed of 3-hydroxyhexanoate ($7.0\;mol{\%}$), 3-hydroxyoctanoate ($45.3\;mol{\%}$), 3-hydroxydecanoate ($39.0\;mol{\%}$), 3-hydroxydodecanoate ($6.8\;mol{\%}$), and 3-hydroxytetradecanoate ($1.9\;mol{\%}$), as determined by GC/MS. Even though glucose was a carbon substrate that support cell growth but not PHA production, the conversion rate of palm oil to PHA was significantly increased when glucose was fed as a cosubstrate, suggesting that bioconversion of some functionalized carbon substrates to related polymers in P chlororaphis HS21 could be enhanced by the co-feed of good carbon substrates for cell growth. In addition, the change of compositions of repeating units in MCL-PHAs synthesized from the plant oils was markedly affected by the supplementation of acrylic acid, an inhibitor of fatty acid ${\beta}-oxidation$. The addition of acrylic acid resulted in the increase of longer chain-length repeating units, such as 3-hydroxydodecanoate and 3-hydroxytetradecanoate, in the MCL-PHAs produced. Particularly, MCI-PHAs containing high amounts of unsaturated repeating units could be produced when sunflower oil and corn oil were used as the carbon substrate. These results suggested that the alteration of PHA synthesis pathway by acrylic acid addition can offer the opportunity to design new functional MCL-PHAs and other unusual polyesters that have unique physico-chemical properties.

Effect of Steviol β-Glucopyranosyl Ester on The Production of Nitric Oxide and Inflammatory Cytokines in RAW 264.7 Cells (Steviol β-Glucopyranosyl Ester가 RAW 264.7 세포의 산화질소 및 염증성 사이토카인 생성에 미치는 영향)

  • Jung, Heehoon;Cho, Uk Min;Hwang, Hyung Seo;Cho, Kun;Lee, Sang Rin;Kim, Moo Sung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.239-247
    • /
    • 2018
  • Chronic inflammation is known to have effects on various diseases such as gout, cancer, dementia, atopic disease, and obesity. In addition, since some signal cascades involved in the development of inflammation are known to affect the damage and aging of the skin tissue, studies are being conducted actively to control the inflammation mechanism. In order to mitigate or prevent inflammatory response, a number of researches have been made to develop anti-inflammatory materials from some plants. In particular, Stevia rebaudiana produces steviol glycosides (SG), a natural sweetener with a distinctive flavor. Studies on some of SG have been shown to have anti-inflammatory activity. Researchers of this study expected that more SG also possess anti-inflammatory activity, besides stevioside, rebaudioside A, and steviol. In order to confirm this possibility, the researchers screened inhibition activity of various steviol glucosides for NO production in RAW 264.7 cell lines. As a result, steviol ${\beta}-glucopyranosyl$ ester (SGE) showed the highest inhibitory activity among steviol derivatives treated at the same molar concentration. In addition, we found that mRNA expression level of $interleukin-1{\alpha}$ ($IL-1{\alpha}$), $interleukin-1{\beta}$ ($IL-1{\beta}$), cyclooxygenase-2 (COX-2), nuclear factor kappa-light chain-enhancer of activated B cells ($NF-{\kappa}B$) and inducible nitric oxide synthase (iNOS) was also decreased in a dose-dependent manner. These results show that SGE inhibits anti-inflammatory activity and NO production in mouse macrophage RAW 264.7 cells. It was confirmed that SGE has potential to be applied as an anti-inflammatory material.

Optimization of Biotransformation Process for Sodium Gluconate Production by Aspergillus niger (Aspergillus niger를 이용한 글루콘산 나트륨 생산 생변환 공정의 최적화)

  • 박부수;조병관;이상윤;임승환;김동일;김병기
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.309-314
    • /
    • 1999
  • In order to produce high concentration of sodium gluconate, optimization of the fermentation conditions, such as glucose concentration, inoculum size, dissolved oxygen concentration and glucose feeding method, was examined. When the glucose concentration was maintained in the range of 30∼50 g/L during the batch fermentation, glucose conversion yield and productivity were 92.2% and 6.0 g/L/hr, respectively. In the case of the low concentration below 30 g/L, the yield decreased by about 25%. As the inoculum size increased above 20%(w/v), lag phase was shortened but the productivity decreased. The dissolved oxygen level of 60∼70% was shown to be the threshold point for 75% of increase in the productivity of sodium gluconate. Finally, optimal glucose feeding rate was determined using various feeding methods such as exponential feeding, feeding based on the average glucose consumption rate and was determined using various feeding methods such as exponential feeding, feeding based on the average glucose consumption rate and on the oxygen uptake rate and etc. Our result shows that glucose feeding, based on the oxygen uptake rate is a very simple, efficient and robust method, especially when oxygen is consumed as a substrate for the bioconversion. Using the above glucose feeding strategy under the optimized condition, 255 g/L of sodium gluconate concentration, 12 g/L/hr of productivity and 95% of glucose conversion yield were achieved with A. niger ACM53.

  • PDF

Development and Validation of Analytical Method for Pectolinarin and Pectolinarigenin in Fermented Cirsium setidens Nakai by Bioconversion (생물전환에 의한 발효 고려엉겅퀴 Pectolinarin 및 Pectolinarigenin의 분석법 개발 및 검증)

  • Oh, Ji-Won;Lee, Jin-Ha;Cho, Myoung-Lae;Shin, Gi-Hae;Kim, Jae-Min;Choi, Sun-Il;Jung, Tae-Dong;Kim, Young-Hyun;Lee, Sang-Jong;Lee, Bong Jin;Park, Seon Ju;Lee, Ok-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.10
    • /
    • pp.1504-1509
    • /
    • 2015
  • The aim of this study was to investigate a validation method for determination of pectolinarin and pectolinarigenin in fermented Cirsium setidens Nakai. For validation, the specificity, linearity, precision, accuracy, detection limits, and quantification limits of pectolinarin and pectolinarigenin were measured by HPLC. The results show that the detection limits of pectolinarin and pectolinarigenin were $4.25{\mu}g/mL$ and $2.46{\mu}g/mL$, respectively. The recovery rates of pectolinarin and pectolinarigenin were high in the ranges of 99.7~104.0% and 99.7~102.4%, respectively. Inter-day and intra-day precisions of pectolinarin and pectolinarigenin in fermented Cirsium setidens Nakai were 0.9%, 0.5% and 0.5%, 0.2%, respectively. Therefore, application of pectolinarin and pectolinarigenin was validated by an analytical method as a marker compound in Cirsium setidens Nakai.

Ginsenoside derivatives and quality characteristics of fermented ginseng using lactic acid bacteria (유산균을 이용한 발효인삼의 ginsenoside 유도체 및 품질특성)

  • Kang, Bok-Hee;Lee, Kun-Jae;Hur, Sang-Sun;Lee, Dong-Sun;Lee, Sang-Han;Shin, Ki-Sun;Lee, Jin-Man
    • Food Science and Preservation
    • /
    • v.20 no.4
    • /
    • pp.573-582
    • /
    • 2013
  • This study was done in order to investigate the bioconversion of ginsenoside, as well as the quality characteristics of fermented ginseng, by using lactic acid bacteria. Quality characteristics such as the thin layer chromatography(TLC) pattern, ginsenosides, total phenolic content, electron donating ability, and total sugar of fermenting ginseng and red ginseng were analyzed. The ginsenoside Rg2r, Rh2s and Rh2r of the fermented ginseng and red ginseng for 65 hours at a temperature of $37^{\circ}C$ were not detected. The ginsenoside Rg1 and Re contents have decreased, while the Rh1, Rg2s, Rd, Rg3r, and Rg3s have increased due to fermentation. The ginsenoside Rg3 of the fermented red ginseng has increased and the contents were $114.83{\sim}131.68{\mu}g/mL$ (control $104.56{\mu}g/mL$). The total phenolic content and electron donating ability of the red ginseng have totally decreased after 7 days of fermentation. The total phenolic contents of the fermented ginseng and red ginseng with different lactic acid bacteria did not show any tendency as different strains. The electron donating ability of the fermented ginseng has increased; however, the electron donating ability of the red ginseng has decreased. The total sugars of the fermented ginseng and red ginseng with different lactic acid bacteria have also decreased.

Production of highly enriched GABA through Lactobacillus plantarum fermentation of katsuobushi protein hydrolyzate made from Dendropanax morbiferus extract fermented by Bacillus subtilis (황칠나무 추출물의 고초균 발효물로 제조된 가쓰오부시 단백가수분해물의 Lactobacillus plantarum 발효를 통한 고농도 GABA 생산)

  • Yu-Jeong An;Nak-Ju Sung;Sam-Pin Lee
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.146-154
    • /
    • 2023
  • To develop a multi-functional ingredient, the bioconversion of katsuobushi protein was optimized using Bacillus subtilis HA and Lactobacillus plantarum KS2020. The Dendropanax morbiferus extract (DME) culture with protease activity (102 unit/mL) was prepared by B. subtilis with 2% glucose and 1% skim milk through one day of alkaline fermentation. Katsuobushi protein was effectively hydrolyzed by the DME culture at 60℃ for 3 hours, resulting in a tyrosine content of 156.85 mg%. Subsequently, a second lactic acid fermentation was carried out with 10% monosodium glutamate (MSG) using L. plantarum KS2020 to produce higher levels of GABA. Following co-cultivation for three days, DME exhibited a pH of 8.3 (0% acidity). After seven days, the viable cell count of L. plantarum increased to 9.33 CFU/mL, but viable Bacillus cells were not detected. Taken together, a multi-functional ingredient with enriched GABA, peptides, probiotics, and umami flavor was developed through lactic acid fermentation using hydrolyzed katsuobushi protein. These results indicate that katsuobushi protein could be used as a byproduct to produce a palatable protein hydrolysate using alkaline-fermented DME culture as a proteolytic enzyme source.

The synthesis of dextran from rice hydrolysates using Gluconobacter oxydans KACC 19357 bioconversion (Gluconobacter oxydans 생물전환을 통한 쌀 가수분해물 유래 dextran 합성)

  • Seung-Min Baek;Hyun Ji Lee;Legesse Shiferaw Chewaka;Chan Soon Park;Bo-Ram Park
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.149-160
    • /
    • 2024
  • Dextran is a glucose homo-polysaccharide with a predominantly α-1,6 glycosidic linkage of microbial source and is known to be produced primarily by lactic acid bacteria. However, it can also be obtained through the dextran dextrinase of acetic acid bacteria (Gluconobacter oxydans). The dextrin-based dextran was obtained from rice starch using G. oxydans fermentation of rice hydrolysate, and its properties were studied. Both dextrin- and rice hydrolysate-added media maintained the OD value of 6 after 20 h of incubation with acetic acid bacteria, and the gel permeation chromatography (GPC) analysis of the supernatant after 72 h of incubation confirmed that a polymeric material with DP of 480 and 405, which was different from the composition of the substrate in the medium, was produced. The glucose linkage pattern of the polysaccharide was confirmed using the proton nuclear magnetic resonance (1H-NMR) and the increased α-1,4:α-1,6 bond ratio from 0.23 and 0.13 to 1:2.37 and 1:4.4, respectively, indicating that the main bonds were converted to α-1,6 bonds. The treatment of dextrin with a rat-derived alpha-glucosidase digestive enzyme resulted in a slow release of glucose, suggesting that rice hydrolysate can be converted to dextran using acetic acid bacteria with glycosyltransferase activity to produce high-value bio-materials with slowly digestible properties.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF