• Title/Summary/Keyword: biochemical conversion

Search Result 134, Processing Time 0.033 seconds

Current Status and Prospects on Biofuel Conversion Technologies and Facilities, Using Lignocellulosic Biomass (목질계 바이오연료 생산을 위한 산업화 기술 및 전망)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.622-628
    • /
    • 2016
  • This study investigated to understand the trend of international commercializing technologies and industrial status of the transportation biofuel based on lignocellulosic biomass. Two major commercializing technologies for the lignocellulosic biofuel are biochemical conversion technology and thermochemical conversion technology. It was reported that a total of 93 industrial companies were using lignocellulosic biomass of all facilities related to advanced biofuel. On the basis of commercial type, the biochemical conversion technology was identified to be the major technology in the lignocellulosic biofuel industries, showing 84% of all. Also the main products of commercial type industrial companies are bioethanol (1,155,000 tons/yr) and bio-oil (120,000 tons/yr), which are in a remarkably inadequate amount to substitute for the transportation biofuel worldwide. It was suggested that the transportation biofuel market was currently in need of further development in both technology and scale, and was in high demands of technological development and commercializing exertion.

Synthesis and Characterization of Nanostructured Titania Films for Dye-Sensitized Solar Cells

  • Hwang, Kyung-Jun;Yoo, Seung-Joon;Jung, Sung-Hoon;Park, Dong-Won;Kim, Sun-Il;Lee, Jae-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.172-176
    • /
    • 2009
  • The nature and morphology of titanium dioxide films play a significant role in determining the overall efficiency of dye-sensitized solar cell (DSSCs). In this work, the preparation of nanostructured titania particles by sol-gel method (SG-$TiO_2$) and its characterization were investigated for the application of DSSCs. The samples were characterized by XRD, XPS, FE-SEM, BET and FT-IR analysis. The energy conversion efficiency of SG-$TiO_2$ was approximately 8.3 % under illumination with AM 1.5 (100 mW/$cm^2$) simulated sunlight. DSSCs made of SG-$TiO_2$ nanocrystalline films as photoanodes achieved better energy conversion efficiency compared to those prepared using commercially available Degussa P25.

Efficiency Variation of Dye-Sensitized Solar Cell Influenced by Phosphor Additives (형광체 첨가에 따른 염료감응형 태양전지의 효율 변화)

  • Jung, Sung-Hoon;Hwang, Kyung-Jun;Kang, Sung-Won;Jeong, Hyung-Gon;Kim, Sun-Il;Lee, Jae-Wook
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.227-233
    • /
    • 2009
  • Recently, dye-sensitized solar cell (DSSC), one of the solar cells, has been widely investigated. Studies on DSSCs can be classified into 4 fields such as $TiO_2$ nanocrystalline materials, dyes, electrolytes and conductive plate. In this work, $TiO_2$ nanoparticles for dye adsorption were synthesized, and added into the photo-electrode paste with different phosphor types and contents. Then, the influence of phosphor additives on the conversion efficiency of DSSCs was investigated. It was found that the maximum conversion efficiency was 8.81% when 0.5% of YAG phospher having the particle size of 400 nm was used.

Fabrication of a solid catalyst using coal fly ash and its utilization for producing biodiesel

  • Go, Young Wook;Yeom, Sung Ho
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.324-330
    • /
    • 2019
  • To recycle raw fly ash (RFA), a waste from thermal power plants, it was used to prepare solid catalysts which have many advantages compared with homogenous catalysts. When biodiesel was produced from soybean oil using RFA, only 1.2% of biodiesel conversion was obtained. A metal hydroxide, NaOH, KOH or $Ca(OH)_2$, was mixed with the acid-treated fly ash (ATFA), and the mixture was calcined at $700^{\circ}C$ for 3 h to prepare the solid catalyst. The solid catalyst prepared by mixing ATFA with NaOH, designated as SC-Na, showed a better performance than those prepared by mixing ATFA with KOH or $Ca(OH)_2$, respectively. The optimal mass ratio of ATFA with NaOH was 1:3, at which the proportion of $Na_2O$ increased to 60.2% in SC-Na, and 97.8% of biodiesel conversion was achieved under optimal reaction conditions (2 w% SC-Na relative to oil and 5 mL-methanol/g-oil at $50^{\circ}C$ for 4 h). Finally, a batch operation was repeatedly carried out to test the feasibility of reusing the solid catalyst, and more than 96% biodiesel conversion was stably achieved for the third round of operations. This study shows that RFA was successfully recycled to solid catalysts through a simple preparation method, and the solid catalyst was reused for the production of biodiesel with high conversion.

Biosynthesis of Rhamnosylated Anthraquinones in Escherichia coli

  • Nguyen, Trang Thi Huyen;Shin, Hee Jeong;Pandey, Ramesh Prasad;Jung, Hye Jin;Liou, Kwangkyoung;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.398-403
    • /
    • 2020
  • Rhamnose is a naturally occurring deoxysugar present as a glycogenic component of plant and microbial natural products. A recombinant mutant Escherichia coli strain was developed by overexpressing genes involved in the TDP-ʟ-rhamnose biosynthesis pathway of different bacterial strains and Saccharothrix espanaensis rhamnosyl transferase to conjugate intrinsic cytosolic TDP-ʟ-rhamnose with anthraquinones supplemented exogenously. Among the five anthraquinones (alizarin, emodin, chrysazin, anthrarufin, and quinizarin) tested, quinizarin was biotransformed into a rhamoside derivative with the highest conversion ratio by whole cells of engineered E. coli. The quinizarin glycoside was identified by various chromatographic and spectroscopic analyses. The anti-proliferative property of the newly synthesized rhamnoside, quinizarin-4-O-α-ʟ-rhamnoside, was assayed in various cancer cells.

Altering UDP-Glucose Donor Substrate Specificity of Bacillus licheniformis Glycosyltransferase towards TDP-Glucose

  • Cho, Kye Woon;Kim, Tae-Su;Le, Tuoi Thi;Nguyen, Hue Thi;Oh, So Yeong;Pandey, Ramesh Prasad;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.268-273
    • /
    • 2019
  • The specificity of a Bacillus licheniformis uridine diphosphate (UDP) glycosyltransferase, YjiC, was increased towards thymidine diphosphate (TDP)-sugar by site-directed mutagenesis. The Arg-282 of YjiC was identified and investigated by substituting with Trp. Conversion rate and kinetic parameters were compared between YjiC and its variants with several acceptor substrates such as 7-hydroxyflavone (7-HF), 4',7-dihydroxyisoflavone, 7,8-dihydroxyflavone and curcumin. Molecular docking of TDP-glucose and 7-HF with YjiC model showed pi-alkyl interaction with Arg-282 and His-14, and pi-pi interaction with $His^{14}$ and thymine ring. YjiC (H14A) variant lost its glucosylation activity with TDP-glucose validating significance of His-14 in binding of TDP-sugars.

Preparation of Al2O3-coated TiO2 Electrode for Recombination Blocking of Photoelectron in Dye-Sensitized Solar Cells (염료감응형 태양전지의 광전자 재결합 방지를 위한 Al2O3 코팅 TiO2 전극 제조)

  • Hwang, Kyung-Jun;Yoo, Seung-Joon;Jung, Sung-Hoon;Kim, Sun-Il;Lee, Jae-Wook
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.162-168
    • /
    • 2010
  • To increase the energy conversion efficiency of dye sensitized solar cells (DSSCs), it has been widely studied how to effectively transferred the electron generated from the adsorbed dye to the $TiO_{2}$ electrode for avoiding the recombination of injected electrons and iodide ions ($I^-/I_3^-$). For the blocking of the recombination, in this study, $Al_2O_3$-coated $TiO_{2}$ electrode was prepared and applied for DSSCs. In especial, the optimal preparation conditions of $Al_2O_3$ coated onto $TiO_{2}$ porous film was proposed for higher energy conversion efficiency. As a result, the solar cells fabricated from $Al_2O_3$-coated (i.e., particle size of bohemite sol : 100 nm) $TiO_{2}$ electrodes showed superior conversion efficiency (9.0%) compared to the bare $TiO_{2}$ electrodes (7.5%).

A Fundamental Study on the Methane Conversion of Agriculture, Forestry and Fisheries Wastes (농·축 ·수산 폐기물의 메탄전환에 관한 기초연구)

  • Hong, Soon-Seok;Park, Sang-Jeon;Hong, Chong-Joon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.1
    • /
    • pp.31-42
    • /
    • 1998
  • A fundamental study on methane conversion for the collection organic wastes of agriculture, forestry and fishers was performed in a laboratory scale. As a result, selected Run B sample were obtained 18.41 C/N Ratio and 168.96 mg/L TCOD; Under the biochemical methane potential test, theoretical and actual methane generation was 313.6 mg/L VS added and 234.2 mg/L VS added, respectively; However, methane conversion from Run B were occurred 74% by anaerobic digestion. By the first order reaction kinetics, kinetic constant were $0.2476d^{-1}$ for Run B. Three steps fill-up filter reactor was evaluated methane content 16% up to promote than blank reactor; TCOD and SCOD have reduced 44.7% and 44.2%, respectively.

  • PDF

Microbial Conversion of Cholesterol to 4-Androstene-3,17-dione by Intermittent Addition of Substrate (간헐적으로 첨가된 Cholesterol로부터 미생물전환에 의한 4-Androstene-3,17-dione의 생산)

  • Choi, S.K.;Kim, H.S.;Park, Y.H.
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.187-192
    • /
    • 1988
  • Production of 4-androstene-3,17-dione(AD) from cholesterol by microbial conversion was investigated. To facilitate the solubilization of cholesterol in the fermentation broth, ethanol was used as an organic solvent. Inhibition on cell growth by ethanol was observed to be negligible upto 2% (V/V) concentration. Microbial conversion was successfully carried out with high yield when the cholesterol was added at early logarithmic growth phase with pH control at 7.0. In order to improve the process productivity, bioconversion was conducted at various mode of cholesterol addition ; 0.1% (V/W) of cholesterol was found to be most appropriate for solubilization in ethanol and was added intermittently. When added three time(total 3 g/$\ell$), overall bioconversion yield reached upto 65% while single addition of same amount of cholesterol (3 g/$\ell$) yielded about 40% conversion.

  • PDF