Browse > Article
http://dx.doi.org/10.4014/jmb.1911.11047

Biosynthesis of Rhamnosylated Anthraquinones in Escherichia coli  

Nguyen, Trang Thi Huyen (Department of Life Science and Biochemical Engineering, Sun Moon University)
Shin, Hee Jeong (Department of Life Science and Biochemical Engineering, Sun Moon University)
Pandey, Ramesh Prasad (Department of Life Science and Biochemical Engineering, Sun Moon University)
Jung, Hye Jin (Department of Life Science and Biochemical Engineering, Sun Moon University)
Liou, Kwangkyoung (Department of Life Science and Biochemical Engineering, Sun Moon University)
Sohng, Jae Kyung (Department of Life Science and Biochemical Engineering, Sun Moon University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.3, 2020 , pp. 398-403 More about this Journal
Abstract
Rhamnose is a naturally occurring deoxysugar present as a glycogenic component of plant and microbial natural products. A recombinant mutant Escherichia coli strain was developed by overexpressing genes involved in the TDP-ʟ-rhamnose biosynthesis pathway of different bacterial strains and Saccharothrix espanaensis rhamnosyl transferase to conjugate intrinsic cytosolic TDP-ʟ-rhamnose with anthraquinones supplemented exogenously. Among the five anthraquinones (alizarin, emodin, chrysazin, anthrarufin, and quinizarin) tested, quinizarin was biotransformed into a rhamoside derivative with the highest conversion ratio by whole cells of engineered E. coli. The quinizarin glycoside was identified by various chromatographic and spectroscopic analyses. The anti-proliferative property of the newly synthesized rhamnoside, quinizarin-4-O-α-ʟ-rhamnoside, was assayed in various cancer cells.
Keywords
Rhamnosyltransferase; quinizarin; Saccharothrix espanaensis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Thomson RH. 1971. Natural Occurring Quinones. Academic Press. pp. 367. 2nd Ed. New York.
2 Bien HS, Stawitz J, Wunderlich K. 2005. Anthraquinone Dyes and Intermediates. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
3 Gordon PF, Gregory P.1987. Anthraquinone Dyes. Organic Chemistry in Colour. Springer Study Edition. Springer, Berlin, Heidelberg.
4 Agarwal S, Singh SS, Verma S, Kumar S. 2000. Antifungal activity of anthraquinone derivatives from Rheum emodi. J. Ethnopharmacol. 72: 43-46.   DOI
5 Anton R, Haag-Berrurier M. 1980. Therapeutic use of natural anthraquinone for other than laxaive actions. Pharmacol. 20(Suppl. 1): 104-112.   DOI
6 Demirezer LO. 1994. Concentrations of anthraquinone glycosides of Rumex crispus during different vegetation stages. Z. Naturforsch. 49c: 404-406.   DOI
7 Kemegne GA, Mkounga P, Ngang JJE, Kamdem SLS, Nkengfack AE. 2017. Antimicrobial structure activity relationship of five anthraquinones of emodine type isolated from Vismia laurentii. BMC Microbiol. 17(41).
8 Nelemas FA. 1976. Clinical and toxicological aspects of anthraquinone laxatives. Pharmacol. 14 (suppl.1): 73-77.   DOI
9 Perchellet EM, Magill MJ, Huang X, Dalke DM, Hua DH, Perchellet JP. 2000. 1,4-anthraquinone: an anticancer drug that blocks nucleoside transport, inhibits macromolecule synthesis, induces DNA fragmentation, and decreases the growth and viability of L1210 leukemic cells in the same nanomolar range as daunorubicin in vitro. Anti-Cancer Drugs. 11: 339-352.   DOI
10 Sakulpanich A, Gritsanapan W. 2009. Detemination of anthraquinone glycoside content in Cassia fistula leaf extracts for alternative source of laxative drug. Int. J. Biomed. Pharmaceut. Sci. 3: 42-45.
11 Strobel T, Al-Dilaimi A, Blom J, Gessner A, Kalinowski J, Luzhetska M, et al. 2012. Complete genome sequence of Saccharothrix espanaensis DSM 44229T and comparison to the other completely sequenced Pseudonocardiaceae. BMC Genomics. 13: 465.   DOI
12 Strobel T, Schmidt Y, Linnenbrink V, Luzhetskyy A, Luzhetska M, Taguchi T, et al. 2013. Tracking down biotransformation to the genetic level: Identification of a highly flexibleglycosyltransferase from Saccharothrix espanaensis. Appl. Environ. Microbiol. 79: 5224-5232.   DOI
13 Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645.   DOI
14 Pandey RP, Parajuli P, Chu LL, Darsandhari S, Sohng JK. 2015. Biosynthesis of amino deoxy-sugar-conjugated flavonol glycosides by engineered Escherichia coli. Biochem. Eng. J. 101: 191-199.   DOI
15 Simkhada D, Lee HC, Sohng JK. 2010. Genetic engineering approach for the production of rhamnosyl and allosyl flavonoids from Escherichia coli. Biotechnol. Bioeng. 107: 154-162.   DOI
16 Al-Otaibi J S, Spittle PT, G ogary E TM. 2016. Interaction of anthraquinone anti-cancer drugs with DNA; experimental and computational quantum chemical study. J. Mol.Struct. 1127: 751-760.   DOI
17 Huang Q, Lu G, Shen HM, Chung MCM, Choon NO. 2007. Anti-cancer properties of anthraquinones from rhubarb. Med. Res. Rev. 27: 609-630.   DOI
18 Semple SJ, Pyke SM, Reynolds GD, Flower RL. 2001. In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. Antivir. Res. 49: 169-178.   DOI
19 Yen GC, Duh PD, Chuang DY. 2000. Antioxidant activity of anthraquinones and anthrone. Food Chem. 70: 437-441.   DOI
20 Lown JW. 1993. Anthracycline and anthraquinone anticancer agents: current status and recent developments. Pharmacol. Ther. 60: 185-214.   DOI
21 Jia X, Iwanowycz S, Wang J, Saaoud F, Yu F, Wang Y, et al. 2014. Emodin attenuates systemic and liver inflammation in hyperlipidemic mice administrated with lipopolysaccharides. Exp. Biol. Med. 239: 1025-1035.   DOI
22 Chiang JH, Yang JS, Ma CY, Yang MD, Huang HY, Hsia TC, et al. 2011. Danthron, an anthraquinone derivative, induces DNA damage and caspase cascades-mediated apoptosis in SNU-1 Human gastric cancer cells through mitochondrial permeability transition pores and bax-triggered pathways. Chem. Res. Toxicol. 24: 20-29.   DOI
23 Lievremont M, Potus J, Guillou B. 1982. Use of Alirazin red S for histochemical staining of $ca^{2+}$ in the mouse; some parameters of the chemical reaction in vitro. Acta Anat. 114: 268-280.   DOI
24 DeLiberto ST, Werner SJ. 2016. Review of anthraquinone applications for pest management and agricultural crop protection. Pest Manag. Sci. 72: 1813-1825.   DOI
25 Anand N, Upadhyaya K, Ajay A, Mahar R, Shukla SK, Kumar B, Tripathi RP. 2013. A Strategy for the Synthesis of Anthraquinone-Based Aryl-C-glycosides. J. Org. Chem. 78: 4685-4696.   DOI
26 Wang Z, Ma P, Xu L, He C, Peng Y, Xiao P. 2013. Evaluation of the content variation of anthraquinone glycosides in rhubarb by UPLC-PDA. Chem. Cent. J. 7(1): 170.   DOI
27 Pandey RP, Parajuli P, Koffas MAG, Sohng JK. 2016. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv. 34: 634-662.   DOI
28 Derksen GCH, Niederlander HAG, van Beek TA. 2002. Analysis of anthraquinones in Rubia tinctorum L. by liquid chromatography coupled with diode-array uv and mass spectrometric detection. J. Chromatogr. A. 978 (1-2): 119-127.   DOI