• Title/Summary/Keyword: biochar

Search Result 176, Processing Time 0.071 seconds

Migration of Alkali and Alkaline Earth Metallic Species and Structure Analysis of Sawdust Pyrolysis Biochar

  • Zhao, Yijun;Feng, Dongdong;Zhang, Yu;Tang, Wenbo;Meng, Shun;Guo, Yangzhou;Sun, Shaozeng
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.659-664
    • /
    • 2016
  • In order to resolve the AAEM species migration routes and the interaction relationship between biochar structure and AAEM species during biomass pyrolysis, experiments were performed in an entrained flow reactor with $N_2$ at $500{\sim}900^{\circ}C$. ICP-AES, XPS and SEM-EDX were used to examine content and distribution of AAEM species and the physicochemical structures of biochar. The results show that at $500{\sim}700^{\circ}C$, the precipitation rate of AAEM species is relatively high. At high temperature (>$700^{\circ}C$), the AAEM species continue to migrate from interior to exterior, but little precipitation from biochar surface. And the migration of AAEM species is mainly realized by the C-O bond as the carrier medium. The AAEM species on biochar surface are mainly Na, Mg and Ca (<$700^{\circ}C$), while changing to K, Mg and Ca (${\geq}700^{\circ}C$). From $500^{\circ}C$ to $900^{\circ}C$, the biochar particle morphology gradually changes from fibers to porous structures, finally to molten particles. At $700{\sim}900^{\circ}C$, Ca element is obviously enriched on the molten edge of the biochar porous structures.

Adsorption Characteristics of Cr6+ and As3+ Using Seaweed Biochar (해초 Biochar를 이용한 Cr6+과 As3+ 흡착 특성)

  • Kim, Bo-Ra;Shin, Woo-Seok;Kim, Young-Kee
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.483-488
    • /
    • 2015
  • This study examined the adsorption characteristics of $Cr^{6+}$ and $As^{3+}$ in the aqueous solution by Hizikia susiformis biochar which was collected from Jeju Island. The optimal pH for $Cr^{6+}$ and $As^{3+}$ adsorption were 2 and pH 6, respectively. Kinetic data showed that the adsorption occurred during the first 100 min, and the most of heavy metals were bound to biochars within 300 min. Moreover, the kinetic data presented that the course of adsorption follows the Pseudo first and second order models. The equilibrium data were well fitted by the Langmuir model and the $Cr^{6+}$ adsorption capacity (25.91 mg/g) was higher than that of $As^{3+}$ (16.54 mg/g). From these results, the seaweed biochar was shown to be a efficient adsorbent for $Cr^{6+}$ and $As^{3+}$ metals in a contaminated environment.

Competitive Adsorption Characteristics of Cupper and Cadmium Using Biochar Derived from Phragmites communis (갈대 biochar의 구리 및 카드뮴 경쟁흡착특성)

  • Park, Jong-Hwan;Kim, Seong-Heon;Shin, Ji-Hyun;Kim, Hong Chul;Seo, Dong Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.21-29
    • /
    • 2015
  • BACKGROUND: Heavy metal adsorptionnot only depends on biochar characteristics but also on the nature of the metals involved and on their competitive behavior for biochar adsorption sites. The goal of this study was to investigate the competitive absorption characteristics of Cu and Cd in mono-metal and binary-metal forms by biochar derived from Phragmites communis. METHODS AND RESULTS: Batch and column experiments were conducted to evaluate the competitive adsorption characteristics of the biocharfor Cu and Cd. In the batch experiments, the maximum adsorption capacity of Cd(63 mg/g) by biochar was higher than that for Cu (55 mg/g) in the mono-metal adsorption isotherm. On the other hand, the maximum Cu adsorption capacity (40 mg/g) by biochar was higher than that for Cd(25 mg/g) in the binary-metal adsorption isotherm. Cu was the most retained cations. Cd could be easily exchanged and substituted by Cu. The amounts of adsorbed metals in the column experiments were in the order of Cd (121 mg/g) > Cu (96 mg/g) in mono-metal conditions, and Cu (72 mg/g) > Cd (29 mg/g) in binary-metal conditions. CONCLUSION: Overall, the results demonstrated that competitive adsorption among metals increased the mobility of these metals. Particularly, Cd in binary-metal conditions lost its adsorption capacity most significantly.

Adsorption Characteristics and Kinetic Models of Ammonium Nitrogen using Biochar from Rice Hull in Sandy Loam Soil

  • Choi, Yong-Su;Kim, Sung-Chul;Shin, Joung-Du
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.413-420
    • /
    • 2015
  • Objective of this study was to investigate adsorption characteristics and kinetic models of $NH_4-N$ to biochar produced from rice hull in respective to mitigation of greenhouse gases. $NH_4-N$ concentration was analyzed by UV Spectrophotometer. For the experiment, the soil texture used in this study was sandy loam soil, and application rates of chemical fertilizer and pig compost were $420-200-370kgha^{-1}$ (N-P-K) and $5,500kgha^{-1}$ as recommended amount after soil test for corn cultivation. Biochar treatments were 0.2-5% to soil weight. Its adsorption characteristic was investigated with application of Langmuir isotherm, and pseudo-first order kinetic model and pseudo-second order kinetic model were used as kinetic models. Adsorption amount and removal rates of $NH_4-N$ were $39.3mg^{-1}$ and 28.0% in 0.2% biochar treatment, respectively. The sorption of $NH_4-N$ to biochar was fitted well by Langmiur model because it was observed that dimensionless constant ($R_L$) was 0.48. The maximum adsorption amount ($q_m$) and binding strength constant (b) were calculated as $4.1mgg^{-1}$ and $0.01Lmg^{-1}$ in Langmuir isotherm, respectively. The pseudo-second order kinetic model was more appropriate than pseudo-first order kinetic model for high correlation coefficient ($r^2$) of pseudo-second order kinetic model. Therefore, biochar produced from rice hull could reduce $N_2O$ by adsorbing $NH_4-N$ to biochar cooperated in sandy loam soil.

Adsorption Characteristics of NH4+ by Biochar Derived from Rice and Maize Residue (벼와 옥수수 부산물로 제조한 바이오차의 NH4+ 흡착 특성 평가)

  • Kang, Yun-Gu;Lee, Jae-Han;Chun, Jin-Hyuk;Oh, Taek-Keun
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.161-168
    • /
    • 2021
  • BACKGROUND: Biochar has ability to reduce N loss, increase crop yield, and sequestrate carbon in the soil However, there is still limited study concerning the interactive effects of various biochars on NH3 loss and plant growth. This study, therefore, was conducted to investigate the NH4+ adsorption characteristics of biochar derived from rice and maize residues. METHODS AND RESULTS: By-products were pyrolyzed under oxygen-limited conditions at 300-700℃ for 1 hour and used for experiment of NH4+ adsorption in aqueous solution. The adsorption characteristics of biochar were studied using Langmuir isotherm. Biochar yield and hydrogen content decreased with increasing pyrolysis temperatures, whereas pH, EC, and total carbon content increased. The biochar pyrolyzed at lower temperatures was more efficient at NH4+ adsorption than those produced at higher temperatures. In addition, the RL values, indicating equilibrium coefficient were between 0 and 1, confirming that the result was suitable for Langmuir isotherm. CONCLUSION: The maize stalk biochar pyrolyzed at 300℃ was the most efficient to adsorb NH4+ from the aqueous solution. Furthermore, the adsorption results of this experiment were lower than those of other prior studies, which were ascribed to different experimental conditions such as ingredients, and pyrolysis conditions.

Surface Analysis and Heavy Metal Adsorption Evaluation of Chemically Modified Biochar Derived from Starfish (Asterina pectinifera) (화학적 개질을 통한 별 불가사리 바이오차 표면 분석 및 중금속 흡착 효율 평가)

  • Jang, Ha Rin;Moon, Deok Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.82-94
    • /
    • 2022
  • In this study, chemically modified biochar (NSBP500, KSBP500, OSBP500) derived from starfish was utilized to improve the adsorption ability of the SBP500 (Starfish Biochar Pyrolyzed at 500℃) in a solution contaminated with heavy metals. According to the biochar modification performance evaluation batch tests, the removal rate and adsorption amount of NSBP500 increased 1.4 times for Cu, 1.5 times for Cd, and 1.2 times for Zn as compared to the control sample SBP500. In addition, the removal rate and adsorption amount of KSBP500 increased 2 times for Cu, 1.8 times for Cd, and 1.2 times for Zn. The removal rate and adsorption amount of OSBP500 increased 5.8 times for Cu. The FT-IR analysis confirmed the changes in the generation and movement of new functional groups after adsorption. SEM analysis confirmed Cu in KSBP500 was in the form of Cu(OH)2 and resembled the structure of nanowires. The Cd in KSBP500 was densely covered in cubic form of Cd(OH)2. Lead(Pb) was in the form of Pb3(OH)2(CO3)2 in a hexagonal atomic layer structure in NSBP500. In addition, it was observed that Zn was randomly covered with Zn5(CO3)2(OH)6 pieces which resembled plates in KSBP500. Therefore, this study confirmed that biochar removal efficiency was improved through a chemical modification treatment. Accordingly, adsorption and precipitation were found to be the complex mechanisms behind the improved removal efficiency in the biochar. This was accomplished by electrostatic interactions between the biochar and heavy metals and ion exchange with Ca2+.

Acidification and Biochar Effect on Ammonia Emission and Nitrogen Use Efficiency of Pig Slurry in the Vegetative Growth of Maize (Zea mays L.)

  • Lee, Seung Bin;Park, Sang Hyun;Lee, Bok Rye;Kim, Tae Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.1
    • /
    • pp.47-53
    • /
    • 2022
  • The objective of this study was to verify the effect of pig slurry application with acidification and biochar on feed value, nitrogen use efficiency (NUE) of maize forage, and ammonia (NH3) emission. The four treatments were applied: 1) non-pig slurry (only water as a control, C), 2) only pig slurry application (P), 3) acidified pig slurry application (AP), 4) acidified pig slurry application with biochar (APB). The pig slurry and biochar were applied at a rate of 150 kg N ha-1 and 300 kg ha-1, respectively. The AP and APB treatments enhanced all feed values compared to C and P treatments. The NUE for plant N was significantly increased 92.1% by AP and APB treatment, respectively, compared to the P treatment. On the other hand, feed values were not significantly different between AP and APB treatments. The acidification treatment with/without biochar significantly mitigated NH3 emission compared to the P treatment. The cumulative NH3 emission throughout the period of measurement decreased by 71.4% and 74.8% in the AP and APB treatments. Also, APB treatment reduced ammonia emission by 11.9% compared to AP treatment. The present study clearly showed that acidification and biochar can reduce ammonia emission from pig slurry application, and pig slurry application with acidification and biochar exhibited potential effects in feed value, NUE, and reducing N losses from pig slurry application through reduction of NH3 emission.

Evaluation of Efficient Pb Removal from Aqueous Solutions using Biochar Beads (바이오차 비드를 이용한 수용액에서 Pb의 효율적인 처리효율 평가)

  • Yu-Jin Park;Jae-Hoon Lee;Jun-Suk Rho;Ah-Young Choi;Sin-Sil Kim;Seul-Rin Lee;Jong-Hwan Park;Dong-Cheol Seo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.35-43
    • /
    • 2023
  • The fine particulate structure of biochar limits its use as a heavy metal adsorbent, and makes separation of the biochar from the solution technically challenging, thereby reducing recovery of the heavy metals. To address this issue, this study prepared biochar beads under various mixing conditions and investigated their efficiency in removing Pb from aqueous solutions using adsorption models. The biochar beads were produced by mixing alginate and biochar at different ratios: alginate bead (AB), 1% biochar + bead (1-BB), 2.5% biochar + bead (2.5-BB), and 5% biochar + bead (5-BB). The results revealed that the Freundlich isothermal adsorption pattern of the biochar beads to Pb was of the L-type. The highest Langmuir isothermal adsorption capacity (28.736 mg/g) was observed in the 2.5-BB treatment. The dominant mechanism among the kinetic adsorption characteristics of biochar beads for Pb was chemical adsorption. Additionally, the optimal pH range for Pb adsorption was found to be between 4 and 5.5. The highest Pb removal efficiency (97.9%) was achieved when 26.6 g/L of biochar beads were used. These findings suggest that biochar beads are an economical and highly efficient adsorbent that enables separation and recovery of fine biochar particles.

Properties of Products from Slow Pyrolysis of Geodae-Uksae 1 (거대억새의 저속 열분해 생성물 특성 분석)

  • Lee, Yongwoon;Eum, Pu-Reun-Byul;Jung, Jinho;Hyun, Seunghun;Park, Yong-Kwon;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.235-237
    • /
    • 2012
  • Geodae-Uksae 1 is a variety of Miscanthus sacchariflorus recently discovered in Korea. It is being mass-cultivated for use as energy crop due to its superior productivity, as high as 30 ton/ha/yr for the dry mass. This study investigates the method of producing biochar and bio-oil from the crop using slow pyrolysis. Especially, the study focused on assessing the biochar properties for its application to soil to improve soil quality and sequestrate carbon. Using an electrically heated packed bed reactor, the products of slow pyrolysis from Geodae-Uksae 1 were produced over a temperature range of $300-700^{\circ}C$ with a heating rate of $10^{\circ}C/min$. The biochar, condensable vapor (bio-oil) and residual gases were characterized for the physical and chemical properties. It was concluded that the ideal temperature for pyrolysis to produce biochar is $500^{\circ}C$.

  • PDF

An Analysis of the Influence Factors of Farmers' Acceptance Intention on Low Carbon Agricultural Technology Bio-Char (저탄소 농업기술 바이오차에 대한 농업인의 수용의도 영향 요인 분석)

  • Ju-Young An;Geum-Yeong Hwang;Ji-Bum Um
    • Journal of Agricultural Extension & Community Development
    • /
    • v.30 no.4
    • /
    • pp.199-212
    • /
    • 2023
  • Recently, despite the active interest and research on biochar, there is a lack of research on the acceptance intention of farmers, who are technology adopters. Accordingly, the purpose of this study was to conduct a survey of 168 farmers and structurally analyze the factors affecting farmers' intention to accept biochar. The analysis results are as follows. First, promotion conditions and network effects have a positive influence on farmers' intention to accept biochar. Second, the mediating variable, network effect, has a complete mediating effect between performance expectations, social influence, and acceptance intention. This suggests that organizations need to be utilized to spread biochar because network effects increase the explanatory power of acceptance intention.