Browse > Article
http://dx.doi.org/10.14478/ace.2015.1060

Adsorption Characteristics of Cr6+ and As3+ Using Seaweed Biochar  

Kim, Bo-Ra (Institute of Marine Science and Technology Research, Hankyong National University)
Shin, Woo-Seok (Institute of Marine Science and Technology Research, Hankyong National University)
Kim, Young-Kee (Institute of Marine Science and Technology Research, Hankyong National University)
Publication Information
Applied Chemistry for Engineering / v.26, no.4, 2015 , pp. 483-488 More about this Journal
Abstract
This study examined the adsorption characteristics of $Cr^{6+}$ and $As^{3+}$ in the aqueous solution by Hizikia susiformis biochar which was collected from Jeju Island. The optimal pH for $Cr^{6+}$ and $As^{3+}$ adsorption were 2 and pH 6, respectively. Kinetic data showed that the adsorption occurred during the first 100 min, and the most of heavy metals were bound to biochars within 300 min. Moreover, the kinetic data presented that the course of adsorption follows the Pseudo first and second order models. The equilibrium data were well fitted by the Langmuir model and the $Cr^{6+}$ adsorption capacity (25.91 mg/g) was higher than that of $As^{3+}$ (16.54 mg/g). From these results, the seaweed biochar was shown to be a efficient adsorbent for $Cr^{6+}$ and $As^{3+}$ metals in a contaminated environment.
Keywords
biosorption; biochar; seaweed; heavy metal;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C. K. Na, M. Y. Han, and H. J. Park, Applicability of theoretical adsorption models for studies on adsorption properties of adsorbent(I), J. Kor. Soc. Environ. Eng., 33, 606-616 (2011).   DOI
2 S. K. Kam and M. G. Lee, Characteristics of chromium biosorption by marine brown algae as biosorbents, J. Korea Technol. Soc. Wat. Wastewater Treat, 6(1), 11-23 (1998).
3 S. Basha and Z. V. P. Murthy, Kinetic and equilibrium models for biosorption of Cr(Ⅵ) on chemically modified seaweed, Cystoseira indica, Process Biochem., 42, 1521-1529 (2007).   DOI   ScienceOn
4 V. Murphy, H. Hughes, and P. McLoughlin, Comparative study of chromium biosorption by red, green and brown seaweed biomass, Chemosphere, 70, 1128-1134 (2008).   DOI   ScienceOn
5 S. Babel and T. A. Kurniawan, Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan, Chemosphere, 54, 951-967 (2004).   DOI   ScienceOn
6 V. M. Boddu, K. Abburi, J. L. Talbott, E. D. Smith, and R. Haasch, Removal of arsenic(III) and arsenic(V) from aqueous medium using chitosan-coated biosorbent, Water Res., 42, 633-642 (2008).   DOI   ScienceOn
7 A. Gupta, S. R. Vidyarthi, and N. Sankararamakrishnan, Concurrent removal of As(III) and As(V) using green low cost functionalized biosorbent - Saccharum officinarum bagasse, J. Environ. Chem. Eng., 3, 113-121 (2015).   DOI   ScienceOn
8 A. N. S. Saqib, A. Waseem, A. F. Khan, Q. Mahmood, A. Khan, A. Habib, and A. R. Khan, Arsenic bioremediation by low cost materials derived from Blue Pine(Pinus wallichiana) and Walnut (Juglans regia), Ecol. Eng., 51, 88-94 (2013).   DOI   ScienceOn
9 D. Ranjan, M. Talat, and S. H. Hasan, Biosorption of arsenic from aqueous solution using agricultural residue 'rice polish', J. Hazard. Mater., 166, 1050-1059 (2009).   DOI   ScienceOn
10 A. Sari, O. D. Uluozlu, and M. Tuzen, Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass, Chem. Eng. J., 167, 155-161 (2011).   DOI   ScienceOn
11 D. Mohan and C. U. Pittman Jr., Arsenic removal from water/ wastewater using adsorbents: a critical review, J. Hazard. Mater., 142, 1-53 (2007).   DOI   ScienceOn
12 R. Gundogan, B. Acemioglu, and M. H. Alma, Copper (II) adsorption from aqueous solution by herbaceous peat, J. Colloid Interface Sci., 269, 303-309 (2004).   DOI   ScienceOn
13 T. G. Chuah, A. Jumasiah, I. Azni, S. Katayon, and S. Y. T. Choong, Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview, Desalination, 175, 305-316 (2005).   DOI   ScienceOn
14 Y. Zeng, H. S. Woo, G. H. Lee, and J. B. Park, Removal of chromate from water using surfactant modified Pohang clinoptilolite and Haruna chabazite, Desalin., 257, 102-109 (2010).   DOI   ScienceOn
15 J. K. Yoon, G. Amy, J. W. Chung, J. S. Sohn, and Y. M. Yoon, Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes, Chemosphere, 77, 228-235 (2009).   DOI   ScienceOn
16 N. Kongsricharoern and C. Polprasert, Chromium removal by a bipolar electrochemical precipitation, Water Sci. Technol., 34, 109-116 (1996).
17 C. Raji and T. S. Anirudhan, Batch Cr(VI) removal by polyacrylamide-grafted sawdust: kinetics and thermodynamics, Water Res., 32, 3772-3780 (1998).   DOI   ScienceOn
18 C. Mbareck, Q. T. Nquyen, O. T. Alaoui, and D. Barillier, Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water, J. Hazard. Mater., 171, 93-101 (2009).   DOI   ScienceOn
19 S. Malamis, E. Katsou, K. Takopoulos, P. Demetriou, and M. Loizidou, Assessment of metal removal, biomass activity and RO concentrate treatment in an MBR-RO system, J. Hazard. Mater., 209-210, 1-8 (2012).   DOI   ScienceOn
20 A. Fathima, J. R Rao, and B. U. Nair, Cr(III) removal from tannery effluent using kaolin-supported bacterial biofilm of Bacillus sp. isolated from chromium polluted soil, J. Chem. Technol. Biotechnol., 87(2), 271-279 (2012).   DOI   ScienceOn
21 E. K. Yetimoglu, M. V. Kahraman, G. Bayramoglu, O. Ercan, and N. K. Apohan, Sulfathiazole-based novel UV-cured hydrogel sorbents for mercury removal from aqueous solutions, Radiat. Phys. Chem., 78, 92-97 (2009).   DOI   ScienceOn
22 B. Wang, C. Li, and H. Liang, Bioleaching of heavy metal from woody biochar using Acidithiobacillus ferrooxidans and activation for adsorption, Bioresour. Technol., 146, 803-806 (2013).   DOI   ScienceOn
23 M. Imamoglu and O. Tekir, Removal of copper(II) and lead(II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalin., 228, 108-113 (2008).   DOI   ScienceOn
24 M. Karnib, A. Kabbani, H. Holail, and Z. Olama, Heavy Metals Removal Using Activated Carbon, Silica and Silica Activated Carbon Composite, Energy Procedia, 50, 113-120 (2014).   DOI   ScienceOn
25 M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee, and Y. S. Ok, Biochar as a sorbent for contaminant management in soil and water: A review, Chemosphere, 99, 19-33 (2014).   DOI   ScienceOn
26 D. Mohan, A. Sarswat, Y. S. Ok, and C. U. Pittman Jr., Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review, Bioresour. Technol., 160, 191-202 (2014).   DOI   ScienceOn
27 X. Cao, L. Ma, B. Gao, and W. Harris, Dairy-manure derived biochar effectively sorbs lead and atrazine, Environ. Sci. Technol., 43, 3285-3291 (2009).   DOI   ScienceOn
28 J. Pan, J. Jiang, and R. Xu, Adsorption of Cr(III) from acidic solutions by crop straw derived biochars, J. Environ. Sci., 25(10), 1957-1965 (2013).   DOI
29 M. Uchimiya, I. M. Lima, K. T. Klasson, S. Chang, L. H. Wartelle, and J. E. Rodgers, Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil, J. Agric. Food Chem., 58, 5538-5544 (2010).   DOI   ScienceOn
30 O. R. Harvey, B. E. Herbert, R. D. Rhue, and L.-J. Kuo, Metal Interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry, Environ. Sci. Technol., 45, 5550-5556 (2011).   DOI   ScienceOn
31 B. H. Um, S. W. Jo, and S. J. Park, Pb(II) Removal from Aqueous Solutions Using Pinewood and Oakwood, J. Korean Wood Sci. Technol., 42(4), 450-459 (2014).   DOI   ScienceOn
32 M. Li, Q. Liu, L. Guo, Y. Zhang, Z. Lou, Y. Wang, and G. Qian, Cu(II) removal from aqueous solution by Spartina alterniflora derived biochar, Bioresour. Technol., 141, 83-88 (2013).   DOI   ScienceOn
33 K. A. Jung, S. H. Woo, S. R. Lim, and J. M. Park, Mineral resources from seaweed biochar derived from a fixed-bed pyrolysis system, Contaminated Land, Ecological Assessment and Remediation, 68 (2014).
34 I. W. Choi, D. C. Seo, S. W. Kang, S. G. Lee, Y. J. Seo, B. J. Lim, J. S. Heo, and J. S. Cho, Adsorption characteristics of heavy metals using sesame waste biochar, Korean J. Soil Sci. Fert., 46(1), 8-15 (2013).   DOI
35 X. Chen, G. Chen, L. Chen, Y. Chen, J. Lehmann, M. B. McBride, and A. G. Hay, Adsorption of copper and zins by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution, Bioresour. Technol., 102, 8877-8884 (2011).   DOI   ScienceOn
36 C. Lacher and R. Smith, Sorption of Hg(II) by potamogeton natans dead biomass, Miner. Eng., 15, 187-191 (2002).   DOI   ScienceOn
37 Z. Liu and F. S. Zhang, Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass, J. Hazard. Mater., 167, 933-939 (2009).   DOI   ScienceOn
38 Y. S. Ho and G. McKay, Thesorption of lead(II) ions on peat, Water Res., 33, 578-584 (1999a).   DOI   ScienceOn
39 Y. S. Ho and G. McKay, Pseudo-second order model for sorption processes, Proc. Biochem., 34, 451-465 (1999b).   DOI   ScienceOn
40 P. Sheng, Y. Ting, J. Chen, and L. Hong, Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms, J. Colloid Interface Sci., 275, 131-141 (2004).   DOI   ScienceOn
41 Y. S. Ho, Effect of pH on lead removal from water using tree fern as the sorbent, Bioresour. Technol., 96, 1292-1296 (2005).   DOI   ScienceOn
42 V. Murphy, H. Hughes, and P. McLoughlin, Coparative study of chromium biosorption by red, green, and brown seaweed biomass, Chemosphere, 70, 1128-1134 (2008).   DOI   ScienceOn
43 D. Ranjan, M. Talat, and S. H. Hasan, Rice polish: an alternative to conventional adsorbents for treating arsenic bearing water by up-flow column method, Ind. Eng. Chem. Res., 48, 10180-10185 (2009).   DOI   ScienceOn
44 H. S. Altundogan, S. Altundogan, F. Tumen, and M. Bildik, Arsenic removal from aqueous solutions by adsorption on red mud, Waste Manag., 20, 761-767 (2000).   DOI   ScienceOn
45 K. S. Hui, C. Y. H. Chao, and S. C. Kot, removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, J. Hazard. Mater., B127, 89-101 (2005).