In this study, medium-chain fatty acid (MCFA) metabolized in the liver for quick energy and CLA exhibited biological activity were used for synthesis of structured lipids (SLs). SLs were synthesized by acidolysis of soybean oil, capric acid (C10:0) and CLA with Chirazyme L-2 lipase as biocatalysts. The effect of enzyme load (2, 4, 6, 8, 10% w/w substrates) was investigated. Production of SL (scale-up) was performed with a 1:2:2 molar ratio (oi1/C10:0/CLA) for 24 h at 55$^{\circ}C$ in a stirred batch reactor (420 rpm). The reaction was catalyzed by Chirazyme L-2 lipase (24.48g, 4% w/w substrates). The scale-up result showed that capric acid and total CLA were incorporated 4.9%, 4.1% (mole%), respectively, in soybean oil. Then, physio-chemical property and flavor characteristic of produced SL-soybean oil were analyzed. Therefore, SL-soybean oil containing C10:0 and CLA was successfully synthesized and may be beneficial in desirable food and nutritional applications.
In an attempt to develop the immobilized biocatalysts based on immobilized Saccharomyces cerevisiae, immobilized yeast was investigated with respect to the conditions affected to ethanol productivities. Saccharomyces cerevisiae was immobilized in the form of the beads by magnetic-calcium alginate, non magnetic-calcium alginate and acrylamide polymerization. Magnetic immobilized yeast, nonmagnetic immobilized yeast and polyacrylamide immobilized yeast were compared in respect of their pH stability, thermostability, heat tolerance, the relation between the concetration of native yeast and retained activity of immobilized yeast, the activity depending on bead size of immobilized yeast, and the effects of magnesium and cobalt on the activities. The more small bead had retained the higher activity for the three kinds of immobilized yeast. In case of 1.0mm diameter of beads, the retained activity was 40~50% for the all groups. The pH stability profile for the immobilized yeast showed a broad range of optimun activity while the native yeast gave a sharp pick for its optimun pH value. The thermostability was at the range of 25~55$^{\circ}$C for the immobilized yeast groups. It was investigated that the influent magnesium and cobalt concentration, and the relative activity have an influent on heat tolerance at steady state. Both protein content released from immobilized yeast and activity of immobilized yeast were changed after activation of immobilized yeast cell.
Two white rot fungi, Ceriporia sp. ZLY-2010 (CER) and Stereum hirsutum (STH) were used as biocatalysts for the biotransformation of (-)-${\alpha}$-pinene. After 96 hr, CER converted the bicyclic monoterpene hydrocarbon (-)-${\alpha}$-pinene into ${\alpha}$-terpineol (yield, 0.05 g/L), a monocyclic monoterpene alcohol, in addition to, other minor products. Using STH, verbenone was identified as the major biotransformed product, and minor products were myrtenol, camphor, and isopinocarveol. We did not observe any inhibitory effects of substrate or transformed products on mycelial growth of the fungi. The activities of fungal manganese-dependent peroxidase and laccase were monitored for 15 days to determine the enzymatic pathways related to the biotransformation of (-)-${\alpha}$-pinene. We concluded that a complex of enzymes, including intra- and extracellular enzymes, were involved in terpenoid biotransformation by white rot fungi.
Structured lipids are lipids in which the composition and/or positional distribution of fatty acids have been chemically or enzymatically modified from their natural biosynthetic form. Because structured lipids have desired nutritional, physicochemical, textural or physiological properties for applications in processed foods, functional foods, or nutraceuticals, many research activities have been aimed at their commercialization. The enzymatic production of structured lipids using lipases as the biocatalysts has a big potential in the future market due to the specificity or selectivity of the lipases. This article introduced some examples of specialty structured lipids that have been enzymatically produced and have been utilized as commercialized products. The commercialized products include medium- and long-chain triacylglycerols, human milk fat substitutes, cocoa butter equivalents, trans-free plastic fats, low-calorie fats/oils, and health-beneficial fatty acid-rich oils.
Cytochrome P450 enzymes (P450s) are involved in the synthesis of a wide variety of valuable products and in the degradation of numerous toxic compounds. The P450 BM3 (CYP102A1) from Bacillus megaterium was the first P450 discovered to be fused to its redox partner, a mammalian-like diflavin reductase. Here, we report the development of a whole-cell biocatalyst using ice-nucleation protein (Inp) from Pseudomonas syringae to display a hemeand diflavin-containing oxidoreductase, P450 BM3 (a single, 119-kDa polypeptide with domains of both an oxygenase and a reductase) on the surface of Escherichia coli. The surface localization and functionality of the fusion protein containing P450 BM3 were verified by flow cytometry and measurement of enzymatic activities. The results of this study comprise the first report of microbial cell-surface display of a heme- and diflavin-containing enzyme. This system should allow us to select and develop oxidoreductases containing heme and/or flavins into practically useful whole-cell biocatalysts for extensive biotechnological applications, including selective synthesis of new chemicals and pharmaceuticals, bioconversion, bioremediation, live vaccine development, and biochip development.
The biocatalytic capture of $CO_2$, and its precipitationas $CaCO_3$, over bovine carbonic anhydrase (BCA) immobilized on a pore-expanded SBA-15 support was investigated. SBA-15 was synthesized using TMB as a pore expander, and the resulting porous silica was characterized by XRD, BET, IR, and FE-SEM analysis. BCA was immobilized on SBA-15 through various approaches, including covalent attachment (BCA-CA), adsorption (BCA-ADS), and cross-linked enzyme aggregation (BCA-CLEA). The immobilization of BCA on SBA-15 was confirmed by the presence of zinc metal in the EDXS analysis. The effects of pH, temperature, storage stability, and reusability on the biocatalytic performance of BCA were characterized by examining para-nitrophenyl acetate (p-NPA) hydrolysis. The $K_{cat}/K_m$ values for p-NPA hydrolysis were 740.05, 660.62, and $680.11M^{-1}s^{-1}$, respectively, where as $K_{cat}/K_m$ for free BCA was $873.76M^{-1}s^{-1}$. The amount of $CaCO_3$ precipitate was measured quantitatively using anion-selective electrode and was found to be 12.41, 11.82, or 11.28 mg $CaCO_3$/mg for BCA-CLEA, BCA-ADS, or BCA-CA, respectively. The present results indicate that the immobilized BCA-CLEA, BCA-ADS, and BCA-CA are green materials, and are tunable, reusable, and promising biocatalysts for $CO_2$ sequestration.
Park, Chan Mi;Jeong, Heon;Ma, Sang Hoon;Kim, Hyun Min;Joung, Young Hee;Yun, Chul-Ho
한국미생물·생명공학회지
/
제47권4호
/
pp.536-545
/
2019
Cytochrome P450 (P450 or CYP) is involved in the metabolism of endogenous and exogenous compounds in most organisms. P450s have great potential as biocatalysts in the pharmaceutical and fine chemical industries because they catalyze diverse oxidative reactions using a wide range of substrates. The high-cost nicotinamide cofactor, NADPH, is essential for P450 reactions. Glucose-6-phosphate dehydrogenase (G6PDH) has been commonly used in NADPH-generating systems (NGSs) to provide NADPH for P450 reactions. Currently, only two G6PDHs from Leuconostoc mesenteroides and Saccharomyces cerevisiae can be obtained commercially. To supply high-cost G6PDH cost-effectively, we cloned the cytosolic G6PDH gene of Solanum lycopersicum (tomato) with 6xHis tag, expressed it in Escherichia coli, and purified the recombinant G6PDH (His-G6PDH) using affinity chromatography. In addition, enzymatic properties of His-G6PDH were investigated, and the His-G6PDH-coupled NGS was optimized for P450 reactions. His-G6PDH supported CYP102A1-catalyzed hydroxylation of omeprazole and testosterone by NADPH generation. This result suggests that tomato His-G6PDH could be a cost-effective enzyme source for NGSs for P450-catalyzed reactions as well as other NADPH-requiring reactions.
Function-driven metagenomic analysis is a powerful approach to screening for novel biocatalysts. In this study, we investigated lipolytic enzymes selected from an alluvial soil metagenomic library, and identified two novel esterases, EstDL26 and EstDL136. EstDL26 and EstDL136 reactivated chloramphenicol from its acetyl derivates by counteracting the chloramphenicol acetyltransferase (CAT) activity in Escherichia coli. These two enzymes showed only 27% identity in amino acid sequence to each other; however both preferentially hydrolyzed short-chain p-nitrophenyl esters (${\leq}C_5$) and showed mesophilic properties. In vitro, EstDL136 catalyzed the deacetylation of 1- and 3-acetyl and 1,3-diacetyl derivates; in contrast, EstDL26 was not capable of the deacetylation at $C_1$, indicating a potential regioselectivity. EstDL26 and EstDL136 were similar to microbial hormone-sensitive lipase (HSL), and since chloramphenicol acetate esterase (CAE) activity was detected from two other soil esterases in the HSL family, this suggests a distribution of CAE among the soil microorganisms. The isolation and characterization of EstDL26 and EstDL136 in this study may be helpful in understanding the diversity of CAE enzymes and their potential role in releasing active chloramphenicol in the producing bacteria.
Cadaverine (1,5-diaminopentane) is an important industrial chemical with a wide range of applications. Although there have been many efforts to produce cadaverine through fermentation, there are not many reports of the direct cadaverine production from lysine using biotransformation. Whole-cell reactions were examined using a recombinant Escherichia coli strain overexpressing the E. coli MG1655 cadA gene, and various parameters were investigated for the whole-cell bioconversion of lysine to cadaverine. A high concentration of lysine resulted in the synthesis of pyridoxal-5'-phosphate (PLP) and it was found to be a critical control factor for the biotransformation of lysine to cadaverine. When 0.025 mM PLP and 1.75 M lysine in 500 mM sodium acetate buffer (pH6) were used, consumption of 91% lysine and conversion of about 80% lysine to cadaverine were successfully achieved.
Jiang, Zhu;Lv, Xueqin;Liu, Yanfeng;Shin, Hyun-dong;Li, Jianghua;Du, Guocheng;Liu, Long
Journal of Microbiology and Biotechnology
/
제28권11호
/
pp.1850-1858
/
2018
Glucosamine (GlcN) is widely used in the nutraceutical and pharmaceutical industries. Currently, GlcN is mainly produced by traditional multistep chemical synthesis and acid hydrolysis, which can cause severe environmental pollution, require a long prodution period but a lower yield. The aim of this work was to develop a whole-cell biocatalytic process for the environment-friendly synthesis of glucosamine (GlcN) from N-acetylglucosamine (GlcNAc). We constructed a recombinant Escherichia coli and Bacillus subtilis strains as efficient whole-cell biocatalysts via expression of diacetylchitobiose deacetylase ($Dac_{ph}$) from Pyrococcus furiosus. Although both strains were biocatalytically active, the performance of B. subtilis was better. To enhance GlcN production, optimal reaction conditions were found: B. subtilis whole-cell biocatalyst 18.6 g/l, temperature $40^{\circ}C$, pH 7.5, GlcNAc concentration 50 g/l and reaction time 3 h. Under the above conditions, the maximal titer of GlcN was 35.3 g/l, the molar conversion ratio was 86.8% in 3-L bioreactor. This paper shows an efficient biotransformation process for the biotechnological production of GlcN in B. subtilis that is more environmentally friendly than the traditional multistep chemical synthesis approach. The biocatalytic process described here has the advantage of less environmental pollution and thus has great potential for large-scale production of GlcN in an environment-friendly manner.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.