• Title/Summary/Keyword: bioaerosol

Search Result 54, Processing Time 0.033 seconds

Evaluation of Atopy and Its Possible Association with Indoor Bioaerosol Concentrations and Other Factors at the Residence of Children (초등학생 가정을 대상으로 한 바이오에어로졸 노출과 아토피와의 연관성 평가)

  • Ha, Jin-Sil;Jung, Hea-Jung;Byun, Hyae-Jeong;Yoon, Chung-Sik;Kim, Yang-Ho;Oh, In-Bo;Lee, Ji-Ho;Ha, Kwon-Chul
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.6
    • /
    • pp.406-417
    • /
    • 2011
  • Objectives: Exposure to bioaerosols in the indoor environment could be associated with a variety adverse health effects, including allergic disease such atopy. The objectives of this study were to assess children's exposure to bioaerosol in home indoor environments and to evaluate the association between atopy and bioaerosol, environmental, and social factors in Ulsan, Korea. Methods: Samples of viable airborne bacteria and fungi were collected by impaction onto agar plates using a Quick Take TM 30 and were counted as colony forming units per cubic meter of air (CFU/$m^3$). Bioaerosols were identified using standard microbial techniques by differential stains and/or microscopy. The environmental factors and possible causes of atopy based on ISAAC (International Study of Allergy and Asthma in Childhood) were collected by questionnaire. Results: The bioaerosol concentrations in indoor environments showed log-normal distribution (p < 0.01). Geometric mean (GM) and geometric standard deviation (GSD) of airborne bacteria and fungi in homes were 189.0 (2.5), 346.1(2.0) CFU/$m^3$, respectively. Indoor fungal levels were significantly higher than those of bacteria (p < 0.001). The concentration of airborne bacteria exceeded the limit recommended by the Korean Ministry of Environment, 800 CFU/$m^3$, in three out of 92 samples (3.3%) from 52 homes. The means of indoor to outdoor ratio (I/O) for airborne bacteria and fungi were 8.15 and 1.13, respectively. The source of airborne bacteria was not outdoors but indoors. GM of airborne bacteria and fungi were 217.6, 291.8 CFU/$m^3$ in the case's home and 162.0, 415.2 CFU/$m^3$ in the control's home respectively. The difference in fungal distributions between case and control were significant (p = 0.004) and the odds ratio was 0.996 (p = 0.027). Atopy was significantly associated with type of house (odds ratio = 1.723, p = 0.047) and income (odds ratio = 1.891, p = 0.041). Some of the potential allergic fungal genera isolated in homes were Cladosporium spp., Botrytis spp., Aspergillus spp., Penicillium spp., and Alternatia spp. Conclusions: These results suggest that there this should be either 'was little' meaning 'basically no significant association was found' or 'was a small negative' mean that an association was found but it was minor. It's a very improtant distinction. Association between airborne fungal concentrations and atopy and certain socioeconomic factors may affect the prevalence of childhood atopy.

Outbreak of Bioaerosols with Continuous Use of Humidifier in Apartment Room

  • Lee, Ji-Hyun;Ahn, Kang-Ho;Yu, Il-Je
    • Toxicological Research
    • /
    • v.28 no.2
    • /
    • pp.103-106
    • /
    • 2012
  • The effect of continuous humidifier use on the bioaerosol concentration in an indoor environment was investigated. An ultrasonic humidifier was operated for 10 hr per day for 15 days in an apartment room. During this time period, viable bioaerosol samples were taken using a single-stage Andersen sampler containing culture media plates for bacteria and fungi. The culture plates were then incubated at room temperature for 2~7 days depending on the media. The counts for the air sample plates were corrected for multiple impactions using the positive hole conversion method and are reported as the colony forming units per cubic meter of air (CFU/$m^3$). While the bacterial concentration measured using the tryptic soy agar (TSA) did not show any significant change during the first 3 days, the concentration increased from the $6^{th}$ day (6979 CFU/$m^3$) and reached a maximum on the $9^{th}$ day (46431 CFU/$m^3$). The concentration then decreased to 2470 CFU/$m^3$ on the $12^{th}$ day, at which point the fungal concentration increased rapidly to 14424~16038 CFU/$m^3$. Also, while the fungal concentration showed a significant change until the $9^{th}$ day of humidifier use, fungal growth was observed on the wallpaper and increased rapidly from the $12^{th}$ day. However, the bacterial concentration increased rapidly after the fungi were removed by remediation. The major fungal species identified in the samples were Penicillium representing 34%, Aspergillus representing 31%, Cladosporium representing 24%, and Alternaria representing 1%. The results also indicated that a relative humidity over 80% was easily achieved with continuous humidifier use. Yet, maintaining a high humidity in a room can cause a rapid outbreak of microbial growth.

Atmospheric Bioaerosol, Bacillus sp., at an Altitude of 3,500 m over the Noto Peninsula: Direct Sampling via Aircraft

  • Kobayashi, Fumihisa;Morosawa, Shinji;Maki, Teruya;Kakikawa, Makiko;Yamada, Maromu;Tobo, Yutaka;Hon, Chun-Sang;Matsuki, Atsushi;Iwasaka, Yasunobu
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.164-171
    • /
    • 2011
  • This work focuses on the analysis of bioaerosols in the atmosphere at higher altitudes over Noto Peninsula, Japan. We carried out direct sampling via aircraft, separated cultures, and identified present isolates. Atmospheric bioaerosols at higher altitudes were collected using a Cessna 404 aircraft for an hour at an altitude of 3,500 m over the Noto Peninsula. The aircraft-based direct sampling system was devised to improve upon the system of balloon-based sampling. In order to examine pre-existing microorganism contamination on the surface of the aircraft body, bioaerosol sampling was carried out just before takeoff using the same method as atmospheric sampling. Identification was carried out by a homology search for 16S or 18S rDNA isolate sequences in DNA databases (GenBank). Isolate sampling just before takeoff revealed Stretpomyces sp., Micrococcus sp., and Cladosporium sp. One additional strain, Bacillus sp., was isolated from the sample after bioaerosol collection at high altitude. As the microorganism contamination on the aircraft body before takeoff differed from that while in the air, the presence of additional, higher atmosphere-based microorganisms was confirmed. It was found that Bacillus sp. was floating at an altitude of 3,500 m over Noto Peninsula.

Survival of Microorganisms on Antimicrobial Filters and the Removal Efficiency of Bioaerosols in an Environmental Chamber

  • Kim, Sung Yeon;Kim, Misoon;Lee, Sunghee;Lee, JungEun;Ko, GwangPyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1288-1295
    • /
    • 2012
  • Exposure to bioaerosols causes various adverse health effects including infectious and respiratory diseases, and hypersensitivity. Controlling exposure to bioaerosols is important for disease control and prevention. In this study, we evaluated the efficacies of various functional filters coated with antimicrobial chemicals in deactivating representative microorganisms on filters or as bioaerosols. Tested functional filters were coated with different chemicals that included (i) Ginkgo and sumac, (ii) Ag-apatite and guanidine phosphate, (iii) $SiO_2$, ZnO, and $Al_2O_3$, and (iv) zeolite. To evaluate the filters, we used a model ventilation system (1) to evaluate the removal efficiency of bacteria (Escherichia coli and Legionella pneumophila), bacterial spores (Bacillus subtilis spore), and viruses (MS2 bacteriophage) on various functional filters, and (2) to characterize the removal efficiency of these bioaerosols. All experiments were performed at a constant temperature of $25^{\circ}C$ and humidity of 50%. Most bacteria (excluding B. subtilis) rapidly decreased on the functional filter. Therefore, we confirmed that functional filters have antimicrobial effects. Additionally, we evaluated the removal efficiency of various bioaerosols by these filters. We used a six-jet collision nebulizer to generate microbial aerosols and introduced it into the environmental chamber. We then measured the removal efficiency of functional filters with and without a medium-efficiency filter. Most bioaerosol concentrations did not significantly decrease by the functional filter only but decreased by a combination of functional and medium-efficiency filter. In conclusion, functional filters could facilitate biological removal of various bioaerosols, but physical removal of these by functional was minimal. Proper use of chemical-coated filter materials could reduce exposure to these agents.

Size-based Characteristics of Airborne Bacteria and Fungi Distributed in the General Hospital (종합병원의 실내공기에 분포하는 부유 세균과 진균의 입경별 종류와 특성)

  • Kim, Ki-Yeon;Lee, Chang-Rae;Kim, Chi-Nyon;Won, Jong Uk;No, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.2
    • /
    • pp.101-109
    • /
    • 2006
  • The objective of this study is to provide fundamental data for pertinent management of indoor air quality through investigating the size-based characteristics of bioaerosol distributed in the general hospital. Measurement sites are main lobby, ICU, ward and laboratory and total five times were sampled with six-stage cascade impactor. Based on the result of this study, concentrations of airborne bacteria and fungi were the highest in main lobby as followed by an order of ward, ICU and laboratory. Concentrations of airborne bacteria was generally higher than those of airborne fungi and the ratio of indoor and outdoor concentration of both exceeded 1.0 in all the measurement sites of the general hospital. The predominant genera of airborne bacteria identified in the general hospital were Staphylococcus spp.(50%), Micrococcus spp.(15-20%), Corynebacterium spp.(5-20%), and Bacillus spp.(5-15%). On the other hand, the predominant genera of airborne fungi identified in the general hospital were Cladosporium spp.(30%), Penicillium spp.(20-25%), Aspergillus spp.(15-20%), and Alternaria spp.(10-20%). In regard to size distribution of bioaerosol, the detection rate was generally highest on 5 stage($1.1-2.1{\mu}m$) for airborne bacteria and on 1 stage(>$7.0{\mu}m$) for airborne fungi. Cleanliness of facilities in the general hospital and condition of HVAC system should be monitored regularly to prevent indoor air contamination by airborne microorganisms.

Microbial Exposure Assessment in Sawmill, Livestock Feed Industry, and Metal Working Fluids Handling Industry

  • Park, Hyun-Hee;Park, Hae-Dong;Lee, In-Seop
    • Safety and Health at Work
    • /
    • v.1 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • Objectives: The objective of this study is to investigate the distribution patterns and exposure concentrations of bioaerosols in industries suspected to have high levels of bioaerosol exposure. Methods: We selected 11 plants including 3 livestock feed plants (LF industry), 3 metal working fluids handling plants (MWFs industry), and 5 sawmills and measured total airborne bacteria, fungi, endotoxins, as well as dust. Airborne bacteria and fungi were measured with one stage impactor, six stage cascade impactor, and gelatin filters. Endotoxins were measured with polycarbonate filters. Results: The geometric means (GM) of the airborne concentrations of bacteria, fungi, and endotoxins were 1,864, $2,252\;CFU/m^3$, and $31.5\;EU/m^3$, respectively at the sawmills, followed by the LF industry (535, $585\;CFU/m^3$, and $22.0\;EU/m^3$) and MWFs industry (258, $331\;CFU/m^3$, and $8.7\;EU/m^3$). These concentrations by industry type were significantly statistically different (p < 0.01). The ratio of indoor to outdoor concentration was 6.2, 1.9, 3.2, and 3.2 for bacteria, fungi, endotoxins, and dust in the LF industry, 5.0, 0.9, 2.3, and 12.5 in the MWFs industry, and 3.7, 4.1, 3.3, and 9.7 in sawmills. The respiratory fractions of bioaerosols were differentiated by bioaerosol types and industry types: the respiratory fraction of bacteria in the LF industry, MWF industry, and sawmills was 59.4%, 72.0%, and 57.7%, respectively, and that of fungi was 77.3%, 89.5%, and 83.7% in the same order. Conclusion: We found that bioaerosol concentration was the highest in sawmills, followed by LF industry facilities and MWFs industry facilities. The indoor/outdoor ratio of microorganisms was larger than 1 and respiratory fraction of microorganisms was more than 50% of the total microorganism concentrations which might penetrate respiratory tract easily. All these findings suggest that bioaerosol in the surveyed industries should be controlled to prevent worker respiratory diseases.

자동차 에어컨 및 난방장치 가동에 따른 bioaerosol 노출특성

  • 이지현;조완근;서영준;강정환;이준엽;권기동
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2004.11a
    • /
    • pp.36-38
    • /
    • 2004
  • 겨울철 및 여름철의 자동차 실내에서의 환기장치 (heater and air conditioner)의 작동이 차내 바이오 에어로졸농도에 미치는 영향을 조사한바 가동전보다 히터나 에어컨 가동 후 미생물 농도가 감소하여 실내 환기장치는 어느정도 공기정화 기능을 하고 있는 것으로 판단된다.

  • PDF