Browse > Article
http://dx.doi.org/10.4014/jmb.1202.02048

Survival of Microorganisms on Antimicrobial Filters and the Removal Efficiency of Bioaerosols in an Environmental Chamber  

Kim, Sung Yeon (Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University)
Kim, Misoon (Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University)
Lee, Sunghee (Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University)
Lee, JungEun (Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University)
Ko, GwangPyo (Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.9, 2012 , pp. 1288-1295 More about this Journal
Abstract
Exposure to bioaerosols causes various adverse health effects including infectious and respiratory diseases, and hypersensitivity. Controlling exposure to bioaerosols is important for disease control and prevention. In this study, we evaluated the efficacies of various functional filters coated with antimicrobial chemicals in deactivating representative microorganisms on filters or as bioaerosols. Tested functional filters were coated with different chemicals that included (i) Ginkgo and sumac, (ii) Ag-apatite and guanidine phosphate, (iii) $SiO_2$, ZnO, and $Al_2O_3$, and (iv) zeolite. To evaluate the filters, we used a model ventilation system (1) to evaluate the removal efficiency of bacteria (Escherichia coli and Legionella pneumophila), bacterial spores (Bacillus subtilis spore), and viruses (MS2 bacteriophage) on various functional filters, and (2) to characterize the removal efficiency of these bioaerosols. All experiments were performed at a constant temperature of $25^{\circ}C$ and humidity of 50%. Most bacteria (excluding B. subtilis) rapidly decreased on the functional filter. Therefore, we confirmed that functional filters have antimicrobial effects. Additionally, we evaluated the removal efficiency of various bioaerosols by these filters. We used a six-jet collision nebulizer to generate microbial aerosols and introduced it into the environmental chamber. We then measured the removal efficiency of functional filters with and without a medium-efficiency filter. Most bioaerosol concentrations did not significantly decrease by the functional filter only but decreased by a combination of functional and medium-efficiency filter. In conclusion, functional filters could facilitate biological removal of various bioaerosols, but physical removal of these by functional was minimal. Proper use of chemical-coated filter materials could reduce exposure to these agents.
Keywords
Bioaerosol; antimicrobial filter; bioaerosol chamber; removal efficiency;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Adams, L., D. Lyon, and P. Alvarez. 2006. Comparative ecotoxicity of nanoscale $TiO_2$, $SiO_2$, and ZnO water suspensions. Water Res. 40: 3527-3532.   DOI   ScienceOn
2 Atzori, C., A. Bruno, G. Chichino, E. Bombardelli, M. Scaglia, and M. Ghione. 1993. Activity of bilobalide, a sesquiterpene from Ginkgo biloba, on Pneumocystis carinii. Antimicrob. Agents Chem. 37: 1492-1496.   DOI   ScienceOn
3 Ba1azy, A., M. Toivola, A. Adhikari, S. K. Sivasubramani, T. Reponen, and S. A. Grinshpun. 2006. Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks? Am. J. Infect. Control 34: 51-57.   DOI   ScienceOn
4 Bomo, A. M., T. K., Stevik, I. Hovi, and J. Hanssen. 2004. Bacterial removal and protozoan grazing in biological sand filters. J. Environ. Qual. 33: 1041-1047.   DOI   ScienceOn
5 Boonkaew, T. and N. Camper. 2005. Biological activities of Ginkgo extracts. Phytomedicine 12: 318-323.   DOI   ScienceOn
6 Cecchini, C., M. C. Verdenelli, C. Orpianesi, G. M. Dadea, and A. Cresci. 2004. Effect of antimicrobial treatment on fibreglassacrylic filters. J. Appl. Microbiol. 97: 371-377.   DOI   ScienceOn
7 Cushnie, T. and A. Lamb. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26: 343-356.   DOI   ScienceOn
8 Davidson, C., C. F. Green, A. L. Panlilio, P. A. Jensen, B. H., Stover, G. Roselle, et al. 2011. Method for evaluating the relative efficiency of selected N95 respirators and surgical masks to prevent the inhalation of airborne vegetative cells by healthcare personnel. Indoor Built Environ. 20: 265-277.   DOI   ScienceOn
9 Decker, H. M., L. M. Buchanan, L. B. Hall, and K. R. Goddard. 1963. Air filtration of microbial particles. Am. J. Public Health. 53: 1982-1988.   DOI   ScienceOn
10 Elahifard, M., S. Rahimnejad, S. Haghighi, and M. Gholami. 2007. Apatite-coated Ag/AgBr/$TiO_2$ visible-light photocatalyst for destruction of bacteria. J. Am. Chem. Soc. 129: 9552-9553.   DOI   ScienceOn
11 Eninger, R. M., A. Adhikari, and T. Reponen. 2008. Differentiating between physical and viable penetrations when challenging respirator filters with bioaerosols. Clean 36: 615-621.
12 EPA. 2001. Method 1601: Male-specific (F+) and Somatic Coliphage in Water by Two-step Enrichment Procedure.
13 Feng, Q., J. Wu, G. Chen, F. Cui, T. Kim, and J. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662-668.   DOI   ScienceOn
14 Gardner, D. and G. Shama. 1998. The kinetics of Bacillus subtilis spore inactivation on filter paper by UV light and UV light in combination with hydrogen peroxide. J. Appl. Microbiol. 84: 633-641.   DOI   ScienceOn
15 Green, C. and P. Scarpino. 2002. The use of ultraviolet germicidal irradiation (UVGI) in disinfection of airborne bacteria. Environ. Eng. Policy 3: 101-107.   DOI   ScienceOn
16 Kawahara, K., K. Tsuruda, M. Morishita, and M. Uchida. 2000. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent. Mater. 16: 452-455.   DOI   ScienceOn
17 Griffiths, W. B., A. Bennette, S. Speight, and S. Parks. 2005. Determining the performance of a commercial air purification system for reducing airborne contamination using model microorganisms: A new test methodology. J. Host Infect. 61: 242-247.   DOI   ScienceOn
18 Hasegawa, N., S. Yamasaki, and Y. Horiguchi. 2011. A study of bacterial culturability during bioaerosol challenge test using a test chamber. J. Aerosol Sci. 42: 397-407.   DOI   ScienceOn
19 Hughey, P. G., P. C. Roberts, L. J. Holsinger, S. L. Zebedee, R. A. Lamb, and R. W. Compans. 1995. Effects of antibody to the influenza A virus M2 protein on M2 surface expression and virus assembly. Virology 212: 411-421.   DOI   ScienceOn
20 Kim, H. Y., H. J. Park, and G. Ko. 2009. Hollow-fiber ultrafiltration for the concentration and simultaneous recovery of multiple pathogens in contaminated foods. J. Food Protect. 72: 2547-2552.   DOI
21 Kemp, S., T. Kuehn, D. Pui, D. Vesley, and A. Streifel. 1995. Filter collection efficiency and growth of microorganisms on filters loaded with outdoor air. ASHRAE Trans. 101: 228-238.
22 Ko, G., M. W. First, and A. H. Burge. 2002. The characterization of upper-room ultraviolet germicidal irradiation in inactivating airborne microorganisms. Environ. Health Perspect. 110: 95-101.   DOI
23 Kushev, D., G. Gorneva, V. Enchev, E. Naydenova, J. Popovac, S. Taxirova, et al. 2002. Synthesis, cytotoxicity, antibacterial and antitumor activity of platinum(II) complexes of 3-aminocyclohexanespiro-5-hydantoin. J. Inorg. Biochem. 89: 203-211.   DOI   ScienceOn
24 Miaskiewicz-Peska, E. 2011. Effect of antimicrobial air filter treatment on bacterial survival. Fibres Text. East Eur. 19: 73-77.
25 Mainelis, G., A. Adhikari, K. Willeke, S. A. Lee, T. Reponen, and S. A. Grinshpun. 2002. Collection of airborne microorganisms by a new electrostatic precipitator. J. Aerosol Sci. 33: 1417-1432.   DOI   ScienceOn
26 Matsumura, Y., K. Yoshikata, S. Kunisaki, and T. Tsuchido. 2003. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69: 4278-4281.   DOI   ScienceOn
27 Mentese, S., A. Y. Rad, M. Arysoy, and G. Gullu. 2011. Seasonal and spatial variations of bioaerosols in indoor urban environments, Ankara, Turkey. Indoor Built Environ. 19: 1-14.
28 Mocho, V. M. and F. X. Ouf. 2011. Clogging of industrial pleated high efficiency particulate air (HEPA) filters in the event of fire. Nucl. Eng. Des. 241: 1785-1794.   DOI   ScienceOn
29 Monteiro, S., J. Clemente, A. Henriques, R. Gomes, M. Carrondo, and A. Cunha. 2005. A procedure for high-yield spore production by Bacillus subtilis. Biotechnol. Progr. 21: 1026-1031.
30 Nasar-Abbas, S. and A. Halkman. 2004. Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens. Int. J. Food Microbiol. 97: 63-69.   DOI   ScienceOn
31 Nicholson, W. L., A. C. Schuerger, and P. Setlow. 2005. The solar UV environment and bacterial spore UV resistance: Considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mut. Res. 571: 249-264.   DOI   ScienceOn
32 Rayne, S. and G. Mazza. 2007. Biological activities of extracts from sumac (Rhus spp.): A review. Plant Food Hum. Nutr. 62: 165-175.   DOI   ScienceOn
33 Saxena, G., A. Mccutcheon, S. Farmer, G. Towers, and R. Hancock. 1994. Antimicrobial constituents of Rhus glabra. J. Ethnopharmacol. 42: 95-99.   DOI   ScienceOn
34 Rengasamy, A., Z. Zhuang, and R. Berryann. 2004. Respiratory protection against bioaerosols: Literature review and research needs. Am. J. Infect. Control 32: 345-354.   DOI   ScienceOn
35 Ribeiro, C., S. Burge, S. Palmer, J. O. H. Tobin, and I. Watkins. 1987. Legionella pneumophila in a hospital water system following a nosocomial outbreak: Prevalence, monoclonal antibody subgrouping and effect of control measures. Epidemiol. Infect. 98: 253-262.   DOI
36 Sarovart, S., B. Sudatis, P. Meesilpa, B. P. Grady, and R. Magaraphan. 2003. The use of sericin as an antioxidant and antimicrobial for polluted air treatment. Rev. Adv. Mater. Sci. 5: 193-198.
37 Sondi, I. and B. Salopek-Sondi. 2004. Silver nanoparticles as antimicrobial agents: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface. Sci. 275: 177-182.   DOI   ScienceOn
38 Thomas, D., P. Penicot, P. Contal, D. Leclerc, and J. Vendel. 2001. Clogging of fibrous filters by solid aerosol particles: Experimental and modelling study. Chem. Eng. Sci. 56: 3549-3561.   DOI   ScienceOn
39 Verdenelli, M. C., C. Cecchini, C. Orpianesi, G. M. Dadea, and A. Cresci. 2003. Efficacy of antimicrobial filter treatments on microbial colonization of air panel filters. J. Appl. Microbiol. 94: 9-15.   DOI   ScienceOn
40 Waage, S. and P. Hedin. 1985. Quercetin 3-O-galactosyl-(1-6)-glucoside, a compound from narrow leaf vetch with antibacterial activity. Phytochemistry 24: 243-245.   DOI   ScienceOn
41 Yamamoto, K., S. Ohashi, M. Aono, T. Kokubo, I. Yamada, and J. Yamauchi. 1996. Antibacterial activity of silver ions implanted in $SiO_2$ filler on oral streptococci. Dent. Mater. 12: 227-229.   DOI   ScienceOn
42 Wang, H., R. L. Wick, and B. Xing. 2009. Toxicity of nanoparticulate and bulk ZnO, $Al_2O_3$ and $TiO_2$ to the nematode Caenorhabditis elegans. Environ. Pollut. 157: 1171-1177.   DOI   ScienceOn
43 Wang, M. and G. Brion. 2007. Effects of RH on glass microfiber filtration efficiency for airborne bacteria and bacteriophage over time. Aerosol Sci. Tech. 41: 775-785.   DOI   ScienceOn
44 Warriner, K., G. Rysstad, A. Murden, P. Rumsby, D. Thomas, and W. Waites. 2000. Inactivation of Bacillus subtilis spores on packaging surfaces by UV excimer laser irradiation. J. Appl. Microbiol. 88: 678-685.   DOI   ScienceOn
45 Yassin, M. F. and S. Almouqatea. 2010. Assessment of airborne bacteria and fungi in an indoor and outdoor environment. Int. J. Environ. Sci. Technol. 7: 535-544.   DOI
46 Yoon, M. and J. Park. 2009. Effect of $SiO_2$-ionized loess on the treatment of tinea pedis. Biotechnol. Bioprocess. Eng. 14: 400-405.   DOI   ScienceOn
47 Young, S. and P. Setlow. 2003. Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide. J. Appl. Microbiol. 95: 54-67.   DOI   ScienceOn
48 Youil, R., Q. Su, T. Toner, C. Szymkowiak, W. S. Kwan, B. Rubin, et al. 2004. Comparative study of influenza virus replication in Vero and MDCK cell lines. J. Virol. Methods 120: 23-31.   DOI   ScienceOn
49 Zhenqiang, X., W. Yan, S. Fangxia, C. Qi, T. Miaomiao, and Y. Maosheng. 2011. Bioaerosol science, technology, and engineering: Past, present, and future. Aerosol Sci. Tech. 45: 1337-1349.   DOI   ScienceOn
50 Zheng, X., K. Li, R. Wang, L. Zhao, L. X. Xu, Y. Chen, et al. 2004. Experimental investigation of integrated air purifying technology for bioaerosol removal and inactivation in central airconditioning system. Chinese Sci. Bull. 49: 306-310.   DOI