• Title/Summary/Keyword: bioactivation

Search Result 29, Processing Time 0.023 seconds

Activation of Dihaloalkanes by Thiol-dependent Mechanisms

  • Guengerich, F. Peter
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.20-27
    • /
    • 2003
  • Dihaloalkanes constitute an important group of chemicals because of their widespread use in industry and agriculture and their potential for causing toxicity and cancer. Chronic toxic effects are considered to depend upon bioactivation, either by oxidation or thiol conjugation. Considerable evidence links genotoxicity and cancer with glutathione conjugations reactions, and some aspects of the mechanisms have been clarified with 1,2-dihaloalkanes and dihalomethanes. Recently the DNA repair protein $O^6$-alkylguanine transferase has been shown to produce cytotoxicity and genotoxicity by mans of a thiol-dependent process with similarities to the glutathione reactions.

Inhibitory effect of Phenethyl Isothiocyanate Against Benzo[a] Pyrene-Induced Rise in CYP1A1 mRNA and Apoprotein Levels as its Chemopreventive Properties

  • Razis, Ahmad Faizal Abdull;Konsue, Nattaya;Ioannides, Costas
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2679-2683
    • /
    • 2015
  • Background: Phenethyl isothiocyanate (PEITC), the most comprehensively studied aromatic isothiocyanate, has been shown to act as an anti-cancer agent mainly through modulation of biotransformation enzymes responsible for metabolizing carcinogens in the human body. Humans are often exposed to carcinogenic factors, some of which through the diet, such as polycyclic aromatic hydrocarbon benzo[a]pyrene via the consumption of over-cooked meats. Inhibition of the enzymes responsible for the bioactivation of this carcinogen, for example CYP1A1, the major enzyme required for polycyclic aromatic hydrocarbons (PAHs) bioactivation, is recognized as a chemoprevention strategy. Objective: To evaluate the inhibitory effects of PEITC against benzo[a]pyrene-induced rise in rat liver CYP1A1 mRNA and apoprotein levels. Materials and Methods: Precision cut rat liver slices were treated with benzo[a]pyrene at 1 and $5{\mu}M$ in the presence of PEITC ($1-25{\mu}M$) for 24 hours, followed by determination of CYP1A1 mRNA and apoprotein levels using quantitative polymerase chain reaction and immunoblotting. Results: Findings revealed that PEITC inhibited benzo[a]pyrene-induced rise in rat liver CYP1A1 mRNA in a dose-dependent manner as well as the apoprotein levels of CYP1A. Conclusions: It was demonstrated that PEITC can directly inhibit the bioactivation of benzo[a]pyrene, indicating chemopreventive potential.

Toxic action of N-dimethylphosphinothioyl carbofuran by oxidative activation process (산화적 활성화 과정을 통한 N-dimethoxyphosphinothioyl carbofuran의 독성발현)

  • Yang, Kyew-Wan;Lee, Seog-Jong;Kim, Song-Mun;Han, Dae-Sung;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.2
    • /
    • pp.10-15
    • /
    • 1998
  • The bimolecular inhibition rate constants of carbofuran and N-dimethylphosphinothioyl carbofuran(PSC) to acetylcholinesterase(AChE) were $7.7{\times}10^{5}\;M^{-1}{\cdot}min^{-1}$ and $1.2{\times}10^{3}\;M^{-1}{\cdot}min^{-1}$, respectively. These results showed that PSC required a bioactivation process for its toxic action because it didn't inhibit the target enzyme effectively. The potency of PSC as an inhibitor of AChE increased when PSC and AChE were incubated with microsomes fortified with NADPH compared with microsome alone. Piperonyl butoxide(PBO) addition to these coupled systems greatly reduced the inhibition of the target enzyme by blocking the bioactivation process. In vivo inhibition study of mouse brain AChE, $I_{50}$ value for AChE was 28 mg/kg for PSC and the value increased to 57 mg/kg when PBO was pretreated. This result showed that cytochrome $P_{450}$ would also play a role in the bioactivation process of PSC in vivo. And conversioin of carbofuran from PSC was 55 % in a chemical oxidation system using meta-chloroperoxybenzoic acid. The oxidative activation of PSC to carbofuran was shown to be essential for showing its toxicological action and cytochrome $P_{450}$ was identified as an important enzyme which participated in this process.

  • PDF

Toxic action of benfuracarb via oxidative bioactivation process by cytochrome $P_{450}$ (Procarbamate계 살충제 benfuracarb의 산화적 활성화 과정을 통한 독성발현)

  • Yu, Yong-Man;Kim, Eun-H.;Kim, Song-Mum;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • This study was conducted to understand the role of oxidative enzyme cytochrome $P_{450}$ in the bioactivation of benfuracarb and to know metabolites of benfuracarb by cytochrome $P_{450}$. The bimolecular imhibition rate constant $(k_i)$ of benfuracarb on acetylcholinesterase (AChE) was as low as $1.1{\times}10^3\;M^{-1}\;min^{-1}$, suggesting that benfuracarb should be activated for its toxic action. The potency of benfuracarb on AChE in the oxidase system (cytochrome $P_{450}$ + NADPH) in vitro was 10-fold higher than that of control (cytochrome $P_{450}$). Such a similar result was also found in the oxidase + PBO system. In vivo the $I_{50}$ of benfuracarb was 22.7mg $kg^{-1}$, but pie-treatment of piperonyl butoxide (PBO) reduced the $I_{50}$ by >100mg $kg^{-1}$. This result suggests that cytochrome $P_{450}$ was involved in the activation of benfuracarb. Using microsomal oxidase system, metabolites of benfuracarb were elucidated. Fifty-eight percent of benfuracarb was converted to carbofuran, a major toxic metabolite, in the oxidase system, while only less than two percent of benfuracarb was converted to carbofuran in the oxidase + PBO system. These results also suggest that cytochrome $P_{450}$ was involved in the activation of benfuracarb. Overall results indicate that cytochrome $P_{450}$ could be involved in the bioactivation of benfuracarb to carbofuran.

Inhibition of Acetylcholinesterase and Butyrylcholinesterase by Phosalone via Bioactivation (Phosalone의 활성화과정을 통한 acetylcholinesterase와 butyrylcholinesterase에 대한 활성 저해)

  • Lim, Geum-Choon;Han, Dae-Sung;Hur, Jang-Hyun
    • Applied Biological Chemistry
    • /
    • v.38 no.2
    • /
    • pp.174-178
    • /
    • 1995
  • The purpose of this study was to investigate a role of cytochrome $P_{450}$, for the toxicity of the phosalone in in vitro and in vivo bioactivation systems. The bimolecular inhibition rate constants$(k_i)$ of the phosalone to acetylcholinesterase(AChE) and butyrylcholinesterase(BuChE) were approximately $10^2M^{-1}{\cdot}min^{-1}$, respectively, which meant a poor inhibitor. The potency of the phosalone as an inhibitor of AChE and BuChE was increased about 300 and 40 fold, respectively, when the inhibitor and the ChE were incubated with microsomes fortified with NADPH compared with microsome alone. Piperonyl butoxide(PB) addition to these coupled systems greatly reduced the inhibition of both target enzymes by blocking a bioactivation process. The $I_{50}$ value of the Phosalone alone for rat brain AChE was 170 mg/kg. When PB was pretreated, that value was altered to 42.5 mg/kg. PB pretreatment synergized the inhibition of brain AChE with four times. Rat blood erythrocyte AChE and plasma BuChE were similarly inhibited in vivo by the phosalone and PB pretreatment didn't affect significantly the pattern of the inhibition. The in vivo studies showed different results in the role of cytochrome $P_{450}$ from those of the in vitro studies.

  • PDF

BIOACTIVATION OF DIBROMOETHANE BY CONJUGATION WITH GLUTAHIONE

  • Kim, Dong-Hyun
    • Toxicological Research
    • /
    • v.7 no.2
    • /
    • pp.231-238
    • /
    • 1991
  • The pesticide and carcinogen ethylene dibromide(EDB) is metabolized both by cytosolic GSH S-transferase and by microsomal mixed function oxygenase. Cytochrome P-450 IIE1 appears to be major enzyme to metabolize EDB.EDB is activated to a mutagen by enzymatic conjugation with glutathione (GSH). Such activation is an exception to the general mode of detoxification via GSH S-transferase action. The primary DNA adduct (>95) is S-[2-(N7-guanyl)ethyl] GSH and a minor adduct is S-[2-(N7-guanyl)ethyl]cysteine, which is excreted in the urine and may serve as a biomarker of damage.

  • PDF

Bioactivation of Aromatic Amines by Human CYP2W1, An Orphan Cytochrome P450 Enzyme

  • Eun, Chang-Yong;Han, Song-Hee;Lim, Young-Ran;Park, Hyoung-Goo;Han, Jung-Soo;Cho, Kyoung-Sang;Chun, Young-Jin;Kim, Dong-Hak
    • Toxicological Research
    • /
    • v.26 no.3
    • /
    • pp.171-175
    • /
    • 2010
  • The human genome contains approximately 13 orphan cytochrome P450 (P450, CYP) genes, of which the apparent function or substrate has not been identified. However, they seem to possess their own biological relevance in some tissues or developmental stages. Here, we characterized the heterologously expressed CYP2W1, an orphan P450 enzyme. The recombinant CYP2W1 protein containing a $6{\times}$(His)-tag at Nterminus has been expressed in Escherichia coli and purified. Expression level of CYP2W1 holoenzyme was around 500 nmol P450 holoenzyme per liter culture medium. The reduced CO difference spectrum of CYP2W1 showed a maximum absorption at 449 nm. CYP2W1 indicated the significant induction to bioactivate Trp-P-1, MeIQ, and IQ in E. coli DJ701 tester strain. However, the bioactivation of B[$\alpha$]P, and NNK by CYP2W1 was relatively low. The model structure of CYP2W1 suggested the characteristic P450 folds with the lengths and orientations of the individual secondary elements. The F-G loop is situated on the distal side of heme to accommodate the flexibility of active site of CYP2W1. These studies can provide useful information for the finding of its biological roles and structure-function relationships of an orphan CYP2W1 enzyme.

Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1

  • Chun, Young-Jin;Kim, Donghak
    • Toxicological Research
    • /
    • v.32 no.2
    • /
    • pp.89-93
    • /
    • 2016
  • Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of $17{\beta}$-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health.

Role of Cytochrome P-450 in the Bioactivation of Nicotine

  • Kim, Bong-Hee;Anthony Travor
    • Archives of Pharmacal Research
    • /
    • v.14 no.2
    • /
    • pp.130-136
    • /
    • 1991
  • Nicotine (100 .mu. M) was incubated with microsomes (1 mg/ml) prepared from New Zealand White rabbits. On the basis of microsomal weight, the rate of nicotine oxidation were calculated on the basis of cytochrome P-450 concentration, the specific activity of the metabolic oxidation catalyzed by lung was approximately 4 times greater than liver (6.4 vs 1, 65 nmoles nicotine oxidized. nmole cytochrome $P-450^{-1}\;min{-1})$. These studies employed several methods of altering activities of specific isozymes present in pulmonary microsomes, including the use of the isozyme2 and 6 specific inhibitor $\alpha$-methylbenzyl ABT, metabolite inhibitors, norbenzphetamine and N-hydroxyamphetamine. TCDD induction and Arochlor 1260 pretreatment. These results support the conclusion that nicotine metabolism by rabbit lung microsomes is mediated primarily by cytochrome P-450 isozyme 2.

  • PDF

Human Cytochrome P450 Metabolic Activation in Chemical Toxicity

  • Kim, Dong-Hak;Chun, Young-Jin
    • Toxicological Research
    • /
    • v.23 no.3
    • /
    • pp.189-196
    • /
    • 2007
  • Cytochrome P450 (P450) enzymes are the major catalysts involved in the biotransformation of various drugs, pollutants, carcinogens, and many endogenous compounds. Most of chemical carcinogens are not active by themselves but they require metabolic activation. P450 isozymes playa pivotal role in the metabolic activation. The activation of arylamines and heterocyclic arylamines (HAAs) involves critical N-hydroxylation, usually by P450. CYP1A2 plays an important role in these reactions. Broad exposure to many of these compounds might cause carcinogenicity in animals and humans. On the other hand, P450s can be also involved in the bioactivation of other chemicals including alcohols, aflatoxin B1, acetaminophen, and trichloroethylene, both in humans and in experimental animals. Understanding the P450 metabolic activation of many chemicals is necessary to develop rational strategies for prevention of their toxicities in human health. An important part is the issues of extrapolation between species in predicting risks and variation of P450 enzyme activities in humans.