Toxic action of benfuracarb via oxidative bioactivation process by cytochrome $P_{450}$

Procarbamate계 살충제 benfuracarb의 산화적 활성화 과정을 통한 독성발현

  • Yu, Yong-Man (Central Institute, Kyung nong Co.) ;
  • Kim, Eun-H. (Agricultural Technology and Extension Center) ;
  • Kim, Song-Mum (Division of Biological Environment, Kangwon National University) ;
  • Hur, Jang-Hyun (Division of Biological Environment, Kangwon National University)
  • Published : 2003.03.27

Abstract

This study was conducted to understand the role of oxidative enzyme cytochrome $P_{450}$ in the bioactivation of benfuracarb and to know metabolites of benfuracarb by cytochrome $P_{450}$. The bimolecular imhibition rate constant $(k_i)$ of benfuracarb on acetylcholinesterase (AChE) was as low as $1.1{\times}10^3\;M^{-1}\;min^{-1}$, suggesting that benfuracarb should be activated for its toxic action. The potency of benfuracarb on AChE in the oxidase system (cytochrome $P_{450}$ + NADPH) in vitro was 10-fold higher than that of control (cytochrome $P_{450}$). Such a similar result was also found in the oxidase + PBO system. In vivo the $I_{50}$ of benfuracarb was 22.7mg $kg^{-1}$, but pie-treatment of piperonyl butoxide (PBO) reduced the $I_{50}$ by >100mg $kg^{-1}$. This result suggests that cytochrome $P_{450}$ was involved in the activation of benfuracarb. Using microsomal oxidase system, metabolites of benfuracarb were elucidated. Fifty-eight percent of benfuracarb was converted to carbofuran, a major toxic metabolite, in the oxidase system, while only less than two percent of benfuracarb was converted to carbofuran in the oxidase + PBO system. These results also suggest that cytochrome $P_{450}$ was involved in the activation of benfuracarb. Overall results indicate that cytochrome $P_{450}$ could be involved in the bioactivation of benfuracarb to carbofuran.

Procarbamate계 살충제인 benfuracarb의 산화효소계에 의한 활성화 과정과 이 과정을 통하여 생성되는 독성 대사물의 전환 정도를 확인하고자 수행되었다. Acetylcholinesterase(AChE) 에 대한 henfuracarb의 이 분자속도저해상수$(k_i)$$1.1\times10^3\;M^{-1}\;min^{-1}$로 매우 낮은 저해력을 보인 바, 이 약제가 체내에서 독성을 발현하기 위해서는 활성화 과정이 필수적임을 가정할 수 있었다. Benfuracarb의 활성화 과정에 관여하는 cytochrome $P_{450}$의 역할을 in vitro 에서 관찰하기 위하여 AChE/MFO coupling system을 사용하였다. AChE/MFO coupling system에서 AChE에 대한 저해력은 NADPH가 처리된 oxidase system이 NADPH 가 결핍된 대조구에 비하여 약 10배정도 증가하였으며, oxidase+PBO system 에서는 약간의 저해력 감소 경향이 관찰되었다. 생쥐에 henfuracarb을 처리한 후 brain AChE 활성을 조사해 본 결과 henfuracarb만 처리한 benfuracarb 처리구에서의 $I_{50}$은 22.7mg $kg^{-1}$이었으며, PBO를 전처리 한 후 henfuracarb을 처리한 benfuracarb+PBO 처리구에서는 $I_{50}$이 >100mg $kg^{-1}$으로 저해정도가 급격히 경감되어 benfuracarb의 활성화 과정에 cytochrome $P_{450}$이 관련되어 있음을 확인할 수 있었다. Microsomal oxidase system 을 이용하여 henfuracarb이 독성 대사물인 carbofuran으로 전환되는 정도를 관찰하였다. Oxidase system 에서는 처리된 benfuracarb의 58.0%가 carbofuran으로 전환되었지만, oxidase+PBO system에서 1.7%만 생성되어 benfuracarb의 활성화과정에 산화효소인 cytochrome $P_{450}$의 역할이 중요함을 확인할 수 있었다. 본 연구를 통하여 benfuracarb의 독성 발현에 관여하는 주된 독성 대사물은 carbofuran이며, 이 활성화 과정 에 cytochrome $P_{450}$이 중요한 역할을 하는 것으로 확인되었다.

Keywords

References

  1. Aldridge, W. N. (1950) Some properties of cholinesterase with particular reference to mechanism (E605) and analogues. J. Biochem. 46:451
  2. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254
  3. Chiu, V. C., C. W. Koreans and R. L. Metcalf (1972) Acetylcholinestelase inhibition by substituted phenyl N-alkylcarbamates. J. Agric. Food Chem. 20:537-540
  4. Drabek, J. and R. Neumann (1985) Proinsecticide In 'Insecticide' progress in pesticide biochemistry and toxicology. Vol. 5. p.35-86, John Wiley and Sons Ltd., U.S.A
  5. Ellman, G. L., K. D. Courtney, V. Andress and R. M. Featherstone (1961) A new rapid colorimetric determination of acetylcholinesterase activity. Biochem. Phannacol. 7:88
  6. Fahmy, M. A. H. and T. R. Fukuto (1981) N-sulfinylated derivatives of methylcarbamate esters. J. Agric. Food Chem. 29:567- 572. Fahmy, M. A. H., T. R. Fukuto, R. O. Myers and R. B. March (1970) The selective toxicity of new N-phosphorothioylcarbamate esters. J. Agric. Food Chem, 18:793-796 https://doi.org/10.1021/jf60171a014
  7. Fahmy, M. A. H., T. R. Fukuto, R. O. Myers and R. B. March (1970) The selective toxicity of new N-phosphorothioylcarbamate esters. J. Agric. Food Chem, 18:793-796 https://doi.org/10.1021/jf60171a014
  8. Goto, T., N. Yasudomi, A. K. Tanaka, N. Osaki, H. Takao, M. Kawata, J. Imada, Y. Endo and N. Umetsu (1988) Synthesis and biological activity of new aminosulfenyl derivatives of the methylcarbamate insecticide, Carbofuran. J. of Pestic. Sci. 13:39-47
  9. Huston, D. H. and T. R. Robert (1985) Insecticide, pp.35 ,85, John Wiley and Sons Ltd., U.S.A
  10. Kawata, M., N. Umetsu, J. Goto and T. R. Fukuto (1988) Synthesis and biological activity of alkoxyl-sufenyl derivatives of methylcarbamate insecticides. J. Pestic. Sci. 13:595,603
  11. Kuhr, R. J. and H. W. Dorough (1976) Carbamate Insecticides: Chemistry, Biochemistry, and Toxicology, p. 3-8, CRC Press, New York, U.S.A
  12. Miyamoto, T and I. Yamamoto (1991) Involvement of Glutathione-S-transferase in the activation of S-alkyl phosphorothiolate insecticides. J. Pestic. Sci. 16:449-455
  13. Umetsu, N., M. A. H. Fahmy and T. R. Fukuto (1979) Metabolism of 2,3-dihydro-2,2-dimethyl-7-benzofuranyl (N-butylaminosulfenyl) -methylcarbamateand 2,3dimethyl-7-benzofuranyl(morpholinosulfenyl) methylcarbamate in cotton and com plants. Pestic. Biochem. Physiol. 10:104-119
  14. 양규완, 이석종, 김성문, 허장현, 한대성 (1998) 산화적 활성화 과정을 통한 N-dimethoxyphosphinothioyl carbofuran 의 독성 발현 한국농약과학회지, 2(2):10-15
  15. 양규완, 홍순성, 이석종, 김성문, 허장현, 한대성 (1997) 산화적 활성화과정을 통한 carbosulfan의 독성발현. 한국농약과학회지, 1(1):28-34
  16. 정영호, 김장억, 검정한, 이영득, 임치환, 허장현 (2000) 최신 농약학, pp.147, 150, 시그마프레스, 한국