Browse > Article
http://dx.doi.org/10.5487/TR.2016.32.2.089

Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1  

Chun, Young-Jin (College of Pharmacy, Chung-Ang University)
Kim, Donghak (Department of Biological Sciences, Konkuk University)
Publication Information
Toxicological Research / v.32, no.2, 2016 , pp. 89-93 More about this Journal
Abstract
Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of $17{\beta}$-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health.
Keywords
Cytochrome P450 1B1; Cancer activation; Polymorphism;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ortiz de Montellano, P.R. (2005) Cytochrome P450: Structure, Mechanism, and Biochemistry, Plenum Press, New York.
2 Guengerich, F.P. (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol., 14, 611-650.   DOI
3 Porter, T.D. and Coon, M.J. (1991) Cytochrome P-450. Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J. Biol. Chem., 266, 13469-13472.
4 Klingenberg, M. (1958) Pigments of rat liver microsomes. Arch. Biochem. Biophys., 75, 376-386.   DOI
5 Lee, I.S. and Kim, D. (2011) Polymorphic metabolism by functional alterations of human cytochrome P450 enzymes. Arch. Pharm. Res., 34, 1799-1816.   DOI
6 Omura, T. and Sato, R. (1962) A new cytochrome in liver microsomes. J. Biol. Chem., 237, 1375-1376.
7 Beaune, P., Dansette, P., Flinois, J.P., Columelli, S., Mansuy, D. and Leroux, J.P. (1979) Partial purification of human liver cytochrome P-450. Biochem. Biophys. Res. Commun., 88, 826-832.   DOI
8 Wang, P.P., Beaune, P., Kaminsky, L.S., Dannan, G.A., Kadlubar, F.F., Larrey, D. and Guengerich, F.P. (1983) Purification and characterization of six cytochrome P-450 isozymes from human liver microsomes. Biochemistry, 22, 5375-5383.   DOI
9 Gonzalez, F.J. (1988) The molecular biology of cytochrome P450s. Pharmacol. Rev., 40, 243-288.
10 Guengerich, F.P. (2004) Cytochrome P450: what have we learned and what are the future issues? Drug Metab. Rev., 36, 159-197.   DOI
11 Sutter, T.R., Guzman, K., Dold, K.M. and Greenlee, W.F. (1991) Targets for dioxin: genes for plasminogen activator inhibitor-2 and interleukin-1 beta. Science, 254, 415-418.   DOI
12 Guengerich, F.P. (2005) Human cytochrome P450 enzymes in Cytochrome P450: Structure, Mechanism, and Biochemistry (Ortiz de Montellano, P.R. Ed.). Plenum Press, New York, pp. 377-530.
13 Shimada, T., Hayes, C.L., Yamazaki, H., Amin, S., Hecht, S.S., Guengerich, F.P. and Sutter, T.R. (1996) Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res., 56, 2979-2984.
14 Chun, Y.J., Oh, Y.K., Kim, B.J., Kim, D., Kim, S.S., Choi, H.K. and Kim, M.Y. (2009) Potent inhibition of human cytochrome P450 1B1 by tetramethoxystilbene. Toxicol. Lett., 189, 84-89.   DOI
15 Shimada, T., Gillam, E.M., Sutter, T.R., Strickland, P.T., Guengerich, F.P. and Yamazaki, H. (1997) Oxidation of xenobiotics by recombinant human cytochrome P450 1B1. Drug Metab. Dispos., 25, 617-622.
16 Nebert, D.W., Dalton, T.P., Okey, A.B. and Gonzalez, F.J. (2004) Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J. Biol. Chem., 279, 23847-23850.   DOI
17 Sissung, T.M., Price, D.K., Sparreboom, A. and Figg, W.D. (2006) Pharmacogenetics and regulation of human cytochrome P450 1B1: implications in hormone-mediated tumor metabolism and a novel target for therapeutic intervention. Mol. Cancer Res., 4, 135-150.   DOI
18 Parikh, A., Gillam, E.M. and Guengerich, F.P. (1997) Drug metabolism by Escherichia coli expressing human cytochromes P450. Nat. Biotechnol., 15, 784-788.   DOI
19 Wang, A., Savas, U., Stout, C.D. and Johnson, E.F. (2011) Structural characterization of the complex between alphanaphthoflavone and human cytochrome P450 1B1. J. Biol. Chem., 286, 5736-5743.   DOI
20 Kim, D. and Guengerich, F.P. (2005) Cytochrome P450 activation of arylamines and heterocyclic amines. Annu. Rev. Pharmacol. Toxicol., 45, 27-49.   DOI
21 Kim, D. and Guengerich, F.P. (2004) Selection of human cytochrome P450 1A2 mutants with enhanced catalytic activity for heterocyclic amine N-hydroxylation. Biochemistry, 43, 981-988.   DOI
22 Chun, Y.J., Kim, S., Kim, D., Lee, S.K. and Guengerich, F.P. (2001) A new selective and potent inhibitor of human cytochrome P450 1B1 and its application to antimutagenesis. Cancer Res., 61, 8164-8170.
23 Shimada, T. and Fujii-Kuriyama, Y. (2004) Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci., 95, 1-6.   DOI
24 Rendic, S. and Guengerich, F.P. (2012) Contributions of human enzymes in carcinogen metabolism. Chem. Res. Toxicol., 25, 1316-1383.   DOI
25 Buters, J., Quintanilla-Martinez, L., Schober, W., Soballa, V.J., Hintermair, J., Wolff, T., Gonzalez, F.J. and Greim, H. (2003) CYP1B1 determines susceptibility to low doses of 7,12-dimethylbenz[a]anthracene-induced ovarian cancers in mice: correlation of CYP1B1-mediated DNA adducts with carcinogenicity. Carcinogenesis, 24, 327-334.   DOI
26 Hanna, I.H., Dawling, S., Roodi, N., Guengerich, F.P. and Parl, F.F. (2000) Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: association of polymorphisms with functional differences in estrogen hydroxylation activity. Cancer Res., 60, 3440-3444.
27 Buters, J.T., Sakai, S., Richter, T., Pineau, T., Alexander, D.L., Savas, U., Doehmer, J., Ward, J.M., Jefcoate, C.R. and Gonzalez, F.J. (1999) Cytochrome P450 CYP1B1 determines susceptibility to 7, 12-dimethylbenz[a]anthracene-induced lymphomas. Proc. Natl. Acad. Sci. U.S.A., 96, 1977-1982.   DOI
28 Galvez-Peralta, M., Shi, Z., Chen, J., Miller, M.L. and Nebert, D.W. (2013) Oral benzo[a]pyrene in CYP1A1/1B1(-/-) double-knockout mice: Microarray analysis during squamous cell carcinoma formation in preputial gland duct. Int. J. Cancer, 132, 2065-2075.   DOI
29 Hayes, C.L., Spink, D.C., Spink, B.C., Cao, J.Q., Walker, N.J. and Sutter, T.R. (1996) 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc. Natl. Acad. Sci. U.S.A., 93, 9776-9781.   DOI
30 Yamazaki, H., Shaw, P.M., Guengerich, F.P. and Shimada, T. (1998) Roles of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes. Chem. Res. Toxicol., 11, 659-665.   DOI
31 Bolton, J.L. and Thatcher, G.R. (2008) Potential mechanisms of estrogen quinone carcinogenesis. Chem. Res. Toxicol., 21, 93-101.   DOI
32 Nishida, C.R., Everett, S. and Ortiz de Montellano, P.R. (2013) Specificity determinants of CYP1B1 estradiol hydroxylation. Mol. Pharmacol., 84, 451-458.   DOI
33 Chun, Y.J., Lee, S.K. and Kim, M.Y. (2005) Modulation of human cytochrome P450 1B1 expression by 2,4,3',5'-tetramethoxystilbene. Drug Metab. Dispos., 33, 1771-1776.
34 McLellan, R.A., Oscarson, M., Hidestrand, M., Leidvik, B., Jonsson, E., Otter, C. and Ingelman-Sundberg, M. (2000) Characterization and functional analysis of two common human cytochrome P450 1B1 variants. Arch. Biochem. Biophys., 378, 175-181.   DOI
35 Stoilov, I., Akarsu, A.N. and Sarfarazi, M. (1997) Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum. Mol. Genet., 6, 641-647.   DOI
36 Stoilov, I., Akarsu, A.N., Alozie, I., Child, A., Barsoum-Homsy, M., Turacli, M.E., Or, M., Lewis, R.A., Ozdemir, N., Brice, G., Aktan, S.G., Chevrette, L., Coca-Prados, M. and Sarfarazi, M. (1998) Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am. J. Hum. Genet., 62, 573-584.   DOI
37 Vasiliou, V. and Gonzalez, F.J. (2008) Role of CYP1B1 in glaucoma. Annu. Rev. Pharmacol. Toxicol., 48, 333-358.   DOI
38 Aklillu, E., Oscarson, M., Hidestrand, M., Leidvik, B., Otter, C. and Ingelman-Sundberg, M. (2002) Functional analysis of six different polymorphic CYP1B1 enzyme variants found in an Ethiopian population. Mol. Pharmacol., 61, 586-594.   DOI
39 Prokudin, I., Simons, C., Grigg, J.R., Storen, R., Kumar, V., Phua, Z.Y., Smith, J., Flaherty, M., Davila, S. and Jamieson, R.V. (2014) Exome sequencing in developmental eye disease leads to identification of causal variants in GJA8, CRYGC, PAX6 and CYP1B1. Eur. J. Hum. Genet., 22, 907-915.   DOI