• Title/Summary/Keyword: bio-technology

Search Result 5,504, Processing Time 0.028 seconds

Bacterial ${\beta}$-Lactamase Fragment Complementation Strategy Can Be Used as a Method for Identifying Interacting Protein Pairs

  • Park, Jong-Hwa;Back, Jung-Ho;Hahm, Soo-Hyun;Shim, Hye-Young;Park, Min-Ju;Ko, Sung-Il;Han, Ye-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1607-1615
    • /
    • 2007
  • We investigated the applicability of the TEM-l ${\beta}$-lactamase fragment complementation (BFC) system to develop a strategy for the screening of protein-protein interactions in bacteria. A BFC system containing a human Fas-associated death domain (hFADD) and human Fas death domain (hFasDD) was generated. The hFADD-hFasDD interaction was verified by cell survivability in ampicillin-containing medium and the colorimetric change of nitrocefin. It was also confirmed by His pull-down assay using cell lysates obtained in selection steps. A coiled-coil helix coiled-coil domain-containing protein 5 (CHCH5) was identified as an interacting protein of human uracil DNA glycosylase (hUNG) from the bacterial BFC cDNA library strategy. The interaction between hUNG and CHCH5 was further confirmed with immunoprecipitation using a mammalian expression system. CHCH5 enhanced the DNA glycosylase activity of hUNG to remove uracil from DNA duplexes containing a U/G mismatch pair. These results suggest that the bacterial BFC cDNA library strategy can be effectively used to identify interacting protein pairs.

Current Challenges in Bacterial Transcriptomics

  • Cho, Suhyung;Cho, Yoobok;Lee, Sooin;Kim, Jayoung;Yum, Hyeji;Kim, Sun Chang;Cho, Byung-Kwan
    • Genomics & Informatics
    • /
    • v.11 no.2
    • /
    • pp.76-82
    • /
    • 2013
  • Over the past decade or so, dramatic developments in our ability to experimentally determine the content and function of genomes have taken place. In particular, next-generation sequencing technologies are now inspiring a new understanding of bacterial transcriptomes on a global scale. In bacterial cells, whole-transcriptome studies have not received attention, owing to the general view that bacterial genomes are simple. However, several recent RNA sequencing results are revealing unexpected levels of complexity in bacterial transcriptomes, indicating that the transcribed regions of genomes are much larger and complex than previously anticipated. In particular, these data show a wide array of small RNAs, antisense RNAs, and alternative transcripts. Here, we review how current transcriptomics are now revolutionizing our understanding of the complexity and regulation of bacterial transcriptomes.

Differentially Expression Genes of Normal and Cloned Bovine Placenta

  • Kim, M.S.;Lee, Y.Y.;Park, J.J.;H.Y. Kang;Y.M. Chang;Yoon, J.T.;K.S. Min
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.82-82
    • /
    • 2003
  • Offspring have been produced from somatic cells in a number of species. This biotechnology introduced a new phenomenon in reprogramming and differentiation of somatic cell, namely totipotency. However, birth of oversized calves and perinatal abnormalities such as increased gestation length, lack of spontaneous parturition, higher incidence of dystocia, and reduced perinatal viability of offspring are frequently observed in pregnancies of cloned bovine fetuses. Disturbance of feto-placenta has been proposed as likely causes for abnomal growth. However. Little is known the mechanism responsible for the perinatal problems. Therefore, we focused on gestation length in somatic cell nuclear recipient cows. To solve this issues, placental tissues of control and cloned bovine were obtained by a cesarean section (C-section) before 5 days of paturition. Total RNA from control and cloned bovine placenta was extractd by TRIzol reagent. GeneFishing DEG kits (Seegene) were used to identify differentially expression genes. Total RNA (3 ug) were synthesized by M-MLV reverse transcriptase (200 u/ul) with 10 uM dT-annealing control primer (ACP1) at 42C for 90 min. Then, first-strand cDNA (50 ng) was amplified using the 5 uM arbitary ACP (1-20) and 10 uM dT-ACP2 primers. Some specific expression genes were amplified, Now, we are cloning and sequencing. These finding strongly can be support to solve the problems for parturition delay in nuclear transfer cows, suggest that placenta specific proteins are key indicators for the aberration of gestation and placental function in cows.

  • PDF

Effects of Colloidal Silver Nanoparticles on Sclerotium-Forming Phytopathogenic Fungi

  • Min, Ji-Seon;Kim, Kyoung-Su;Kim, Sang-Woo;Jung, Jin-Hee;Lamsal, Kabir;Kim, Seung-Bin;Jung, Moo-Young;Lee, Youn-Su
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.376-380
    • /
    • 2009
  • Effects of silver nanoparticles on the phytopathogenic fungal growth were investigated. Fungal phytopathogens, especially for sclerotium-forming species Rhizoctonia solani, Sclerotinia sclerotiorum and S. minor, were selected due to their important roles in survival and disease cycle. Tests for the fungal hyphal growth revealed that silver nanoparticles remarkably inhibit the hyphal growth in a dose-dependent manner. Different antimicrobial efficiency of the silver nanoparticle was observed among the fungi on their hyphal growth in the following order, R. solani > S. sclerotiorum > S. minor. Tests for the sclerotial germination growth revealed that the nanoparticles showed significant inhibition effectiveness. In particular, the sclerotial germination growth of S. sclerotiorum was most effectively inhibited at low concentrations of silver nanoparticles. A microscopic observation revealed that hyphae exposed to silver nanoparticles were severely damaged, resulting in the separation of layers of hyphal wall and collapse of hyphae. This study suggests the possibility to use silver nanoparticles as an alternative to pesticides for scleotium-forming phytopathogenic fungal controls.

An In Vitro Study of the Antifungal Effect of Silver Nanoparticles on Oak Wilt Pathogen Raffaelea sp.

  • Kim, Sang-Woo;Kim, Kyoung-Su;Lamsal, Kabir;Kim, Young-Jae;Kim, Seung-Bin;Jung, Moo-Young;Sim, Sang-Jun;Kim, Ha-Sun;Chang, Seok-Joon;Kim, Jong-Kuk;Lee, Youn-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.760-764
    • /
    • 2009
  • In this study, we investigated the antifungal activity of three different forms of silver nanoparticles against the unidentified ambrosia fungus Raffaelea sp., which has been responsible for the mortality of a large number of oak trees in Korea. Growth of fungi in the presence of silver nanoparticles was significantly inhibited in a dose-dependent manner. We also assessed the effectiveness of combining the different forms of nanoparticles. Microscopic observation revealed that silver nanoparticles caused detrimental effects not only on fungal hyphae but also on conidial germination.

Effects of Bio-stimulant Addition on Biological Wastewater Treatment Processes (생물학적 하·폐수처리 공정에서 생물촉진제 첨가의 영향)

  • Lee, Seockheon;Jung, Jin Young;Park, Ki Young
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.398-402
    • /
    • 2005
  • The enzyme Xeronine was investigated as a microbial activating substance in biological wastewater treatment processes. Xeronine as bio-stimulant was injected in the anaerobic sludge and the activated sludge treating wastewater in order to examine the effect of hidden benefits. Bio-stimulant did not show significant improvement of anaerobic treatablity. In the aerobic system, higher bio-stimulant dose condition resulted in slightly more removal of nitrogen and phosphorus. Floc aggregation and zone settling velocity as solid-liquid separation factors in activated sludge systems was enhanced by bio-stimulant. Effects of bio-stimulants injection on improvement of water quality and microbial activity did not clear in terms of normal operation conditions.