Browse > Article
http://dx.doi.org/10.5808/GI.2013.11.2.76

Current Challenges in Bacterial Transcriptomics  

Cho, Suhyung (Department of Biological Sciences and KAIST Institute for the BioCentury, Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology)
Cho, Yoobok (Department of Biological Sciences and KAIST Institute for the BioCentury, Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology)
Lee, Sooin (Department of Biological Sciences and KAIST Institute for the BioCentury, Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology)
Kim, Jayoung (Department of Biological Sciences and KAIST Institute for the BioCentury, Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology)
Yum, Hyeji (Department of Biological Sciences and KAIST Institute for the BioCentury, Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology)
Kim, Sun Chang (Department of Biological Sciences and KAIST Institute for the BioCentury, Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology)
Cho, Byung-Kwan (Department of Biological Sciences and KAIST Institute for the BioCentury, Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology)
Abstract
Over the past decade or so, dramatic developments in our ability to experimentally determine the content and function of genomes have taken place. In particular, next-generation sequencing technologies are now inspiring a new understanding of bacterial transcriptomes on a global scale. In bacterial cells, whole-transcriptome studies have not received attention, owing to the general view that bacterial genomes are simple. However, several recent RNA sequencing results are revealing unexpected levels of complexity in bacterial transcriptomes, indicating that the transcribed regions of genomes are much larger and complex than previously anticipated. In particular, these data show a wide array of small RNAs, antisense RNAs, and alternative transcripts. Here, we review how current transcriptomics are now revolutionizing our understanding of the complexity and regulation of bacterial transcriptomes.
Keywords
antisense RNA; next-generation sequencing; RNA sequencing; satellite RNA; transcription initiation site; transcriptome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jacob F, Perrin D, Sanchez C, Monod J. Operon: a group of genes with the expression coordinated by an operator. C R Hebd Seances Acad Sci 1960;250:1727-1729.
2 Ishihama A. Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 2000;54:499-518.   DOI   ScienceOn
3 Pérez-Rueda E, Collado-Vides J. The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. Nucleic Acids Res 2000;28:1838-1847.   DOI
4 Waters LS, Storz G. Regulatory RNAs in bacteria. Cell 2009; 136:615-628.   DOI   ScienceOn
5 Ma JC, Newman AJ, Hayward RS. Internal promoters of the rpoBC operon of Escherichia coli. Mol Gen Genet 1981;184: 548-550.   DOI
6 Güell M, van Noort V, Yus E, Chen WH, Leigh-Bell J, Michalodimitrakis K, et al. Transcriptome complexity in a genome- reduced bacterium. Science 2009;326:1268-1271.   DOI   ScienceOn
7 Qiu Y, Cho BK, Park YS, Lovley D, Palsson BØ, Zengler K. Structural and operational complexity of the Geobacter sulfurreducens genome. Genome Res 2010;20:1304-1311.   DOI   ScienceOn
8 Sorek R, Cossart P. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 2010;11:9-16.
9 Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 2010;464:250-255.   DOI   ScienceOn
10 Cho BK, Zengler K, Qiu Y, Park YS, Knight EM, Barrett CL, et al. The transcription unit architecture of the Escherichia coli genome. Nat Biotechnol 2009;27:1043-1049.   DOI   ScienceOn
11 Selinger DW, Cheung KJ, Mei R, Johansson EM, Richmond CS, Blattner FR, et al. RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nat Biotechnol 2000;18:1262-1268.   DOI   ScienceOn
12 Toledo-Arana A, Solano C. Deciphering the physiological blueprint of a bacterial cell: revelations of unanticipated complexity in transcriptome and proteome. Bioessays 2010;32: 461-467.   DOI   ScienceOn
13 Rasmussen S, Nielsen HB, Jarmer H. The transcriptionally active regions in the genome of Bacillus subtilis. Mol Microbiol 2009;73:1043-1057.   DOI   ScienceOn
14 Koide T, Reiss DJ, Bare JC, Pang WL, Facciotti MT, Schmid AK, et al. Prevalence of transcription promoters within archaeal operons and coding sequences. Mol Syst Biol 2009;5:285.
15 Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet 2011;52:413-435.   DOI   ScienceOn
16 McGrath PT, Lee H, Zhang L, Iniesta AA, Hottes AK, Tan MH, et al. High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat Biotechnol 2007;25:584-592.   DOI   ScienceOn
17 Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet- Revillet H, Balestrino D, et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature 2009;459: 950-956.   DOI   ScienceOn
18 Pinto AC, Melo-Barbosa HP, Miyoshi A, Silva A, Azevedo V. Application of RNA-seq to reveal the transcript profile in bacteria. Genet Mol Res 2011;10:1707-1718.   DOI
19 Metzker ML. Sequencing technologies: the next generation. Nat Rev Genet 2010;11:31-46.   DOI   ScienceOn
20 Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10:57-63.   DOI   ScienceOn
21 Soon WW, Hariharan M, Snyder MP. High-throughput sequencing for biology and medicine. Mol Syst Biol 2013;9:640.
22 Mamanova L, Andrews RM, James KD, Sheridan EM, Ellis PD, Langford CF, et al. FRT-seq: amplification-free, strand-specific transcriptome sequencing. Nat Methods 2010;7:130-132.   DOI   ScienceOn
23 Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, et al. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 2010; 7:709-715.   DOI   ScienceOn
24 He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW. The antisense transcriptomes of human cells. Science 2008;322:1855-1857.   DOI   ScienceOn
25 Loudig O, Brandwein-Gensler M, Kim RS, Lin J, Isayeva T, Liu C, et al. Illumina whole-genome complementary DNA-mediated annealing, selection, extension and ligation platform: assessing its performance in formalin-fixed, paraffin-embedded samples and identifying invasion pattern-related genes in oral squamous cell carcinoma. Hum Pathol 2011;42:1911-1922.   DOI   ScienceOn
26 Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 2001;30: 892-897.
27 Armour CD, Castle JC, Chen R, Babak T, Loerch P, Jackson S, et al. Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nat Methods 2009;6:647-649.   DOI   ScienceOn
28 Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, et al. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 2009;37:e123.   DOI   ScienceOn
29 Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, et al. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 2008;4:e1000163.   DOI   ScienceOn
30 Liu JM, Livny J, Lawrence MS, Kimball MD, Waldor MK, Camilli A. Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Res 2009;37:e46.   DOI   ScienceOn
31 Schmidtke C, Findeiss S, Sharma CM, Kuhfuss J, Hoffmann S, Vogel J, et al. Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions. Nucleic Acids Res 2012;40:2020-2031.   DOI   ScienceOn
32 Filiatrault MJ, Stodghill PV, Myers CR, Bronstein PA, Butcher BG, Lam H, et al. Genome-wide identification of transcriptional start sites in the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. PLoS One 2011;6:e29335.   DOI
33 Raghavan R, Groisman EA, Ochman H. Genome-wide detection of novel regulatory RNAs in E. coli. Genome Res 2011;21:1487-1497.   DOI   ScienceOn
34 Mitschke J, Vioque A, Haas F, Hess WR, Muro-Pastor AM. Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120. Proc Natl Acad Sci U S A 2011;108:20130-20135.   DOI
35 Jager D, Sharma CM, Thomsen J, Ehlers C, Vogel J, Schmitz RA. Deep sequencing analysis of the Methanosarcina mazei Go1 transcriptome in response to nitrogen availability. Proc Natl Acad Sci U S A 2009;106:21878-21882.   DOI   ScienceOn
36 Irnov I, Sharma CM, Vogel J, Winkler WC. Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res 2010; 38:6637-6651.   DOI
37 Berk AJ, Sharp PA. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 1977;12:721-732.   DOI   ScienceOn
38 Voorhies M, Foo CK, Sil A. Experimental annotation of the human pathogen Histoplasma capsulatum transcribed regions using high-resolution tiling arrays. BMC Microbiol 2011;11:216   DOI
39 Herring CD, Raffaelle M, Allen TE, Kanin EI, Landick R, Ansari AZ, et al. Immobilization of Escherichia coli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays. J Bacteriol 2005;187: 6166-6174.   DOI   ScienceOn
40 Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, et al. An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 2011;108:2124- 2129.   DOI   ScienceOn
41 Perkins TT, Kingsley RA, Fookes MC, Gardner PP, James KD, Yu L, et al. A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genet 2009;5:e1000569.   DOI   ScienceOn
42 Sesto N, Wurtzel O, Archambaud C, Sorek R, Cossart P. The excludon: a new concept in bacterial antisense RNA-mediated gene regulation. Nat Rev Microbiol 2013;11:75-82.
43 Guell M, Yus E, Lluch-Senar M, Serrano L. Bacterial transcriptomics: what is beyond the RNA horiz-ome? Nat Rev Microbiol 2011;9:658-669.   DOI   ScienceOn
44 Yoder-Himes DR, Chain PS, Zhu Y, Wurtzel O, Rubin EM, Tiedje JM, et al. Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci U S A 2009;106:3976-3981.   DOI   ScienceOn
45 Dornenburg JE, Devita AM, Palumbo MJ, Wade JT. Widespread antisense transcription in Escherichia coli. MBio 2010;1.
46 Lasa I, Toledo-Arana A, Dobin A, Villanueva M, de los Mozos IR, Vergara-Irigaray M, et al. Genome-wide antisense transcription drives mRNA processing in bacteria. Proc Natl Acad Sci U S A 2011;108:20172-20177.   DOI   ScienceOn
47 Hirakawa H, Harwood CS, Pechter KB, Schaefer AL, Greenberg EP. Antisense RNA that affects Rhodopseudomonas palustris quorum-sensing signal receptor expression. Proc Natl Acad Sci U S A 2012;109:12141-12146.   DOI
48 Chen BS, Hsu CY, Liou JJ. Robust design of biological circuits: evolutionary systems biology approach. J Biomed Biotechnol 2011;2011:304236.