• 제목/요약/키워드: bio-signal detection

검색결과 90건 처리시간 0.027초

Rapid and Accurate Detection of Bacillus anthracis Spores Using Peptide-Quantum Dot Conjugates

  • Park, Tae-Jung;Park, Jong-Pil;Seo, Gwi-Moon;Chai, Young-Gyu;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권11호
    • /
    • pp.1713-1719
    • /
    • 2006
  • A method for the simple, rapid, specific, and accurate detection of Bacillus anthracis spores was developed by employing specific capture peptides conjugated with fluorescent quantum dots (QDs). It was possible to distinguish B. anthracis spores from the spores of B. thuringiensis and B. cereus using these peptide-QD conjugates by flow cytometric and confocal laser scanning microscopic analyses. For more convenient high-throughput detection of B. anthracis spores, spectrofluorometric analysis of spore-peptide-QD conjugates was performed. B. anthracis spores could be detected in less than 1 h using this method. In order to avoid any minor yet false-positive signal caused by the presence of B. thuringiensis spores, the B-Negative peptide, which can only bind to B. thuringiensis, conjugated with another type of QD that fluoresces at different wavelength was also developed. In the presence of mixed B. anthracis and B. thuringiensis spores, the BABA peptide conjugated with QD525 and the B-Negative peptide conjugated with QD585 were able to bind to the former and the latter, specifically and respectively, thus allowing the clear detection of B. anthracis spores against B. thuringiensis spores by using two QD-labeling systems. This capture peptide-conjugated QD system should be useful for the detection of B. anthracis spores.

PSPICE Modeling of Commercial ICs for Switch-Mode Power Supply (SMPS) Design and Simulation

  • Yi, Yun-Jae;Yu, Yun-Seop
    • Journal of information and communication convergence engineering
    • /
    • 제9권1호
    • /
    • pp.74-77
    • /
    • 2011
  • PSPICE modeling of a commercial LED driver IC (TOP245P) and PC817A optocoupler is proposed for the switch-mode power supply (SMPS) (applicable to LED driver) design and simulation. An analog behavioral model of the TOP245P IC including the shunt regulator, under-voltage(UV) detection, over-voltage(OV) shut-down and SR flip-flop is developed by using PSPICE. The empirical equation of PC817A current transfer ratio (CTR) is fitted from the datasheet of PC817A. Two types of SMPSs are simulated with the averaged-model and switching-model. The simulation results by the proposed PSPICE models are in good agreement with those in the data sheet and an experimental data.

위전도 계측시스템의 개발 (Development of Electrogastrography System)

  • 한완택;김인영;김원기;박기원;김희찬;손정일;이풍렬;이종철
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.403-406
    • /
    • 1997
  • Electrogastrogaphy(EGG) is the technique by which gastric myoelectrical activity is recorded noninvasively, from electrodes on the abdominal skin. Despite many attempts made over the decades, the clinical application of the EGG signal has not improved to the identification of waveform characteristics using comparison of EGG signal to be detected other EGG system. Cutaneous measurements of EGG are yet to be standardized in methods of detection and analysis. This may be responsible in part for some of the variability in the results. Thus, we develope EGG system composed of amplifiers, analysis methods, patient database or standardization. we introduce configurations of EGG system and their functions. Several important EGG parameters are introduced, including the dominant frequency and power of the EGG, the relative, period EGG-dominant frequency and power, the instability coefficient of EGG-dominant frequency and power, standard deviation, the percentage of running spectrum activity of gastric slow waves.

  • PDF

비접촉 방식의 생체 신호 측정을 위한 도플러 레이더 시스템 (Doppler Radar System for Noncontact Bio-signal measurement)

  • 신재연;조성필;장병준;박호동;이윤수;이경중
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.357-359
    • /
    • 2009
  • In this paper, the 2.4GHz doppler radar system consisting of the doppler radar module and a baseband module were designed to detect heartbeat and respiration signal without direct skin contact. A bio-radar system emits continuous RF signal of 2.4GHz toward human chest, and then detects the reflected signal so as to investigate cardiopulmonary activities. The heartbeat and respiration signals acquired from quadrature signal of the doppler radar system are applied to the pre-processing circuit, amplification circuit, and the offset circuit of the baseband module. ECG(electrocardiogram) and reference respiration signals are measured simultaneously to evaluate the doppler radar system. As a result, the respiration signal of doppler radar signal is detected to 1m without complex digital signal processing. The sensitivity and calculated from I/Q respiration signal were $98.29{\pm}1.79%$, $97.11{\pm}2.75%$, respectively, and positive predictivity were $98.11{\pm}1.45%$, $92.21{\pm}10.92%$, respectively. The sensitivity and positive predictivity calculated from phase and magnitude of the doppler radar were $95.17{\pm}5.33%$, $94.99{\pm}5.43%$, respectively. In this paper, we confirmed that noncontact real-time heartbeat and respiration detection using the doppler radar system has the possibility and limitation.

  • PDF

곡률기반 기준점 검출을 이용한 계층적 심전도 신호 개인인증 알고리즘 (Hierarchical Authentication Algorithm Using Curvature Based Fiducial Point Extraction of ECG Signals)

  • 김정준;이승민;류강수;이종학;박길흠
    • 한국멀티미디어학회논문지
    • /
    • 제20권3호
    • /
    • pp.465-473
    • /
    • 2017
  • Electrocardiogram(ECG) signal is one of the unique bio-signals of individuals and is used for personal authentication. The existing studies on personal authentication method using ECG signals show a high detection rate for a small group of candidates, but a low detection rate and increased execution time for a large group of candidates. In this paper, we propose a hierarchical algorithm that extracts fiducial points based on curvature of ECG signals as feature values for grouping candidates ​and identifies candidates using waveform-based comparisons. As a result of experiments on 74 ECG signal records of QT-DB provided by Physionet, the detection rate was about 97% at 3-heartbeat input and about 99% at 5-heartbeat input. The average execution time was 22.4 milliseconds. In conclusion, the proposed method improves the detection rate by the hierarchical personal authentication process, and also shows reduced amount of computation which is plausible in real-time personal authentication usage in the future.

수면 단계에 따른 심전도 신호의 상관관계 분석 (Correlation Analysis of Electrocardiogram Signal according to Sleep Stage)

  • 이지은;유선국
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1370-1378
    • /
    • 2018
  • There is a problem to measure neutral bio-signals during sleep because of inconvenience of attaching lots of sensors. In this study, we measured single electrocardiogram(ECG) signal and analyzed the correlation with sleep. After R-peak detection from ECG signal, we extracted 9 features from time and frequency domain of heart rate variability(HRV). Mean of HRV, RR intervals differing more than 50ms(NN50), and divided by the total number of all RR intervals(pNN50) have significant differences in each sleep stage. Specially, the mean HRV has an average of 87.8% accuracy in classifying sleep and awake status. In the future, the measurement ECG signal minimizes inconvenience of attaching sensors during sleep. Also, it can be substituted for the standard sleep measurement method.

CW 바이오 레이더에서 ALE(Adaptive Line Enhancer) 기반의 새로운 적응형 잡음제거기를 이용한 잡음제거 및 심장박동 검출 (Noise Cancellation and Detection of Heartbeat using A New Adaptive Noise Canceller Based on ALE(Adaptive Line Enhancer) in the CW Bio-radar)

  • 서명환;김재중
    • 한국항행학회논문지
    • /
    • 제13권4호
    • /
    • pp.482-489
    • /
    • 2009
  • 이 논문에서는 AWGN환경에서 발생하는 가우시안 잡음과 발진기에서 생기는 시스템 잡음을 제거할 수 있는 ALE(Adaptive Line Enhancer) 기반의 새로운 적응형 잡음 제거기를 이용한 CW(Continuous-Wave) 바이오 레이더를 제안한다. 최근에 CW 바이오 레이더를 이용해서 심장박동과 호흡을 검출하는 연구가 여러 연구기관에서 진행 되고 있다. 그러나 이 연구들은 기존 CW 바이오 레이더가 가우시안 잡음에 취약하고 그로 인해 심장박동 검출정확도도 떨어진다는 점을 설명을 하고 있긴 하지만, 그 잡음을 효과적으로 없앨 수 있는 방안은 계속 연구 중에 있다. 본 논문에서는 기저대역 신호에 포함된 잡음을 효과적으로 제거할 수 있는 ALE기반의 적응형 잡음 제거기를 적용한 것을 제안한다. 또한 타겟의 위치에 따른 복조의 민감함에 강점을 가진 quadrature 수신기를 통과한 잡음이 포함된 기저대역 신호에서 잡음만을 효과적으로 제거함으로 인해 심장박동 검출 정확도를 향상시키는 것을 모의실험을 통해 비교 분석해 본다.

  • PDF

GAF 변환을 사용한 딥 러닝 기반 단일 리드 ECG 신호에서의 수면 무호흡 감지 (Sleep apnea detection from a single-lead ECG signal with GAF transform feature-extraction through deep learning)

  • 주우;이승은;강경태
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.57-58
    • /
    • 2022
  • Sleep apnea (SA) is a common chronic sleep disorder that disrupts breathing during sleep. Clinically, the standard for diagnosing SA involves nocturnal polysomnography (PSG). However, this requires expert human intervention and considerable time, which limits the availability of SA diagnoses in public health sectors. Therefore, ECG-based methods for SA detection have been proposed to automate the PSG procedure and reduce its discomfort. We propose a preprocessing method to convert the one-dimensional time series of ECG into two-dimensional images using the Gramian Angular Field (GAF) algorithm, extract temporal features, and use a two-dimensional convolutional neural network for classification. The results of this study demonstrated that the proposed method can perform SA detection with specificity, sensitivity, accuracy, and area under the curve (AUC) of 88.89%, 81.50%, 86.11%, and 0.85, respectively. Our experimental results show that SA is successfully classified by extracting preprocessing transforms with temporal features.

  • PDF

Applications of Field-Effect Transistor (FET)-Type Biosensors

  • Park, Jeho;Nguyen, Hoang Hiep;Woubit, Abdela;Kim, Moonil
    • Applied Science and Convergence Technology
    • /
    • 제23권2호
    • /
    • pp.61-71
    • /
    • 2014
  • A field-effect transistor (FET) is one of the most commonly used semiconductor devices. Recently, increasing interest has been given to FET-based biosensors owing totheir outstanding benefits, which are likely to include a greater signal-to-noise ratio (SNR), fast measurement capabilities, and compact or portable instrumentation. Thus far, a number of FET-based biosensors have been developed to study biomolecular interactions, which are the key drivers of biological responses in in vitro or in vivo systems. In this review, the detection principles and characteristics of FET devices are described. In addition, biological applications of FET-type biosensors and the Debye length limitation are discussed.

Nanogap-Based Electrochemical Detection of Protein, Virus, and Bacteria

  • Park, Dae Keun;Kim, Soohyun;Yun, Kum-Hee;Pyo, Hanna;Kang, Aeyeon;Kim, Daehee;Lee, Cho Yeon;Yun, Wan Soo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.353.2-353.2
    • /
    • 2016
  • We studied electrochemical detection of Botulinum neurotoxin, Vaccinia virus, and Streptococcus Pneumoniae based on nanogap device. Target bio substances were employed as representative targets of protein, virus, and bacteria, respectively. Redox current generated by ferri/ferrocyanide as an electroactive probe was enhanced according to gap distance which was controlled by surface-catalyzed chemical deposition. We found that enhanced electrochemical signal leads more sensitive signal changes according to selective interaction of target and its complementary elements on the electrode or gap area. In case of Botulinum neurotoxin, the redox signal showed a time-dependent increase due to cleavage of the immobilized peptide which blocked redox cycling. Redox cycling was also hindered by Vaccinia virus and Streptococcus Pneumoniae which were selectively immobilized in the gap area.

  • PDF