• 제목/요약/키워드: bio-reactor

검색결과 229건 처리시간 0.022초

Bio-degradation of Phenol in Wastewater by Enzyme-loaded Membrane Reactor: Numerical Approach

  • Barbieri, Giuseppe;Choi, Seung-Hak;Scura, Francesco;Mazzei, Rosalinda;Giorno, Lidietta;Drioli, Enrico;Kim, Jeong-Hoon
    • 멤브레인
    • /
    • 제19권1호
    • /
    • pp.72-82
    • /
    • 2009
  • A mathematical model was written for simulating the removal of phenol from wastewater in enzyme-loaded membrane reactor (EMR). The numerical simulation program was developed so as to predict the degradation of phenol through an EMR. Numerical model proves to be effective in searching for optimal operating conditions and creating an optimal microenvironment for the biocatalyst in order to optimize productivity. In this study, several dimensionless parameters such as Thiele Modulus (${\phi}^2$, dimensionless Michaelis-Menten constant ($\xi$), Peclet number (Pe) were introduced to simplify their effects on system efficiency. In particular, the study of phenol conversion at different feed compositions shows that low phenol concentrations and high Thiele Modulus values lead to higher reactant degradation.

Effects of arsenite and variation of microbial community on continuous bio-hydrogen production from molasses using a sequence batch reactor (SBR)

  • William, Dennis Sambai;Lee, Pul-eip;Lee, Tae-jin
    • Environmental Engineering Research
    • /
    • 제20권4호
    • /
    • pp.370-376
    • /
    • 2015
  • This study investigated the effects of various arsenite concentrations on bio-hydrogen production from molasses using a sequence batch reactor (SBR) operated in a series of three batch cycles. In the first batch cycle, hydrogen production was stimulated at arsenite concentrations lower than 2.0 mg/L, while inhibition occurred at arsenite concentration higher than 2.0 mg/L compared to the control. Hydrogen production decreased substantially during the second batch cycle, while no hydrogen was produced during the third batch cycle at all tested concentrations. The toxic density increased with respect to the increase in arsenite concentrations (6.0 > 1.6 > 1.0 > 0.5 mg/L) and operation cycles (third cycle > second cycle > first cycle). The presence of microorganisms such as Clostridium sp. MSTE9, Uncultured Dysgonomonas sp. clone MEC-4, Pseudomonas parafulva FS04, and Uncultured bacterium clone 584CL3e9 resulted in active stimulation of hydrogen production, however, it was unlikely that Enterobacter sp. sed221 was not related to hydrogen production. The tolerance of arsenite in hydrogen producing microorganisms decreased with the increase in induction time, which resulted in severing the inhibition of continuous hydrogen production.

Production of high dissolved O2/O3 with rotating wheel entraining gas method for environmental application

  • Li, Haitao;Xie, Bo;Hui, Mizhou
    • Advances in environmental research
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 2013
  • There is a significant demand to make various dissolved gases in water. However, the conventional aeration method shows low gas mass transfer rate and gas utilization efficiency. In this study, a novel rotating wheel entraining gas method was developed for making high dissolved $O_2$ and $O_3$ in water. It produced higher concentration and higher transfer rate of dissolved $O_2$ and $O_3$ than conventional bubble aeration method, especially almost 100% of gas transfer efficiency was achieved for $O_3$ in enclosed reactor. For application of rotating wheel entraining gas method, aerobic bio-reactor and membrane bio-reactor (MBR) were successfully used for treatment of domestic and pharmaceutical wastewater, respectively; and vacuum ultraviolet $(VUV)/UV+O_3/O_2$ reactors were well used for sterilization in air/water, removal of dust particles and toxic gases in air, and degradation of pesticide residue and sterilization on fruits and vegetables.

태양열 이용 바이오메탄 분해 해석연구 (Simulation Analysis of Bio-Methane Decomposition Using Solar Thermal Energy)

  • 김하늘;이상남;이상직;김종규
    • 신재생에너지
    • /
    • 제17권1호
    • /
    • pp.40-49
    • /
    • 2021
  • In this study, the optical properties, heat transfer capabilities and chemical reaction performance of a methane thermal decomposition reactor using solar heat as a heat source were numerically analyzed on the basis of the cavity shape. The optical properties were analyzed using TracePro, a Monte Carlo ray tracing-based program, and the heat transfer analysis was performed using Fluent, a CFD program. An indirect heating tubular reactor was rotated at a constant speed to prevent damage by the heat source in the solar furnace. The inside of the reactor was filled with a porous catalyst for methane decomposition, and the outside was insulated to reduce heat loss. The performance of the reactor, based on cavity shape, was calculated when solar heat was concentrated on the reactor surface and methane was supplied into the reactor in an environment with a solar irradiance of 700 W/㎡, a wind speed of 1 m/s, and an outdoor temperature of 25℃. Thus, it was confirmed that the heat loss of the full-cavity model decreased to 13% and the methane conversion rate increased by 33.5% when compared to the semi-cavity model.

동시 질산화-탈질(SND) 반응을 적용한 MBR 반응조에서 질소 및 인 제거 특성 (Nitrogen and Phosphorus Removal in Membrane Bio-Reactor (MBR) Using Simultaneous Nitrification and Denitrification (SND))

  • 전동걸;임현숙;안찬현;이봉규;전항배;박찬일
    • 대한환경공학회지
    • /
    • 제35권10호
    • /
    • pp.724-729
    • /
    • 2013
  • 동시 질산화 탈질은 미세 용존 산소하에 한 반응조내에서 일어난다. 따라서, 본 연구에서는 인 방출을 위해 공기가 공급되는 MBR 전단에 혐기성 존을 만들어주었으며, 높은 DO 농도에서 탈질효율을 향상시켜 주기 위해서는 MBR 내에 배플을 설치하여 무산소 존이 이루어지게 하였다. 그리고 인 제거를 위한 테스트는 MBR 전단의 혐기성 반응조에 알럼 응집제를 투입하여 수행하였다. 질소 제거를 위한 SND의 최적 DO 농도 도출은 MBR 내 DO 농도를 2.0, 1.5, 1.0, 0.75 mg/L의 다양한 조건에서의 운전을 통해 수행하였다. 심지어 높은 알칼리성 하수라 알럼 응집제를 투입하였을 때 알칼리 용액 첨가 없이도 pH는 7.0~8.0로 유지되었다. TCODcr와 $NH_4^+$-N의 제거 효율은 모든 DO 농도에서 90% 이상이었다. DO 농도 2.0, 1.5, 1.0, 0.75 mg/L에서의 TN 제거효율은 각각 50, 51, 54, 66%이었다. DO 농도 0.75 mg/L 조건에서 알럼을 첨가한 결과 TN 제거효율은 54%로 감소하였다. 혐기성 반응조에 알럼을 투입한 결과 TP 제거효율은 29%에서 95%로 향상되었다. 그리고 알럼 투입 후 분리막 모듈의 화학적 세정 주기는 15~20일부터 40~50일으로 늘어났다.

호기조에 고정상 담체를 충진한 A2/O공정에서 무산소조 체류시간 변화가 유기물질 및 질소 제거에 미치는 영향 (A Study on the Effect of an HRT of Anoxic Reactors on Organic Matter and Nitrogen Removal in A2/O Processes with Bio Contact Media in Aerobic Tank)

  • 황규대;한봉석
    • 한국물환경학회지
    • /
    • 제23권4호
    • /
    • pp.451-457
    • /
    • 2007
  • Four parallel $A^2/O$ systems maintaining an MLSS of 3,000 mg/L were operated to investigate the effects of varying an HRT of anoxic reactors and packing Bio contact media (BCM, fixed beds) in aerobic reactors on organic matter removal and nitrification/denitrification efficiencies. All systems were operated under conditions that the external recycle ratio was kept 0.5 Q while the internal recycle ratio was changed 1.0 Q to 1.5 Q with that $NH_4-N$ concentration of feed was increased to 40 mg/L by adding $NH_4Cl$. In terms of TSS and TCODcr removal efficiency, both systems with BCM and a system without BCM, respectively, had a similar level of the removal efficiency under varied HRTs of anoxic reactors (0.6 hr, 1.3 hr, 2 hr, 2 hr; control, without BC M) showing that varying an HRT of anoxic reactors did not affect the removal efficiency. While SCODcr removal efficiency of systems with BCM was improved approximately 4~5% at the same HRT of anoxic reactor, the removal efficiency of system with BCM was slightly decreased by reducing an HRT of anoxic reactor. The nitrification efficiency for both systems with BCM and a system without BCM was above 94% showing that packing BCM in aerobic reactors and varying an HRT of anoxic reactors did not affect the efficiency significantly despite of increasing $NH_4-N$ concentration of feed. The denitrification efficiency increased from 81.4% to 85.4% at system with BCM while the efficiency decreased when a shorter HRT of anoxic reactors was kept. The excellent effluent quality for $NO_3-N$ concentration was observed although the $NO_3-N$ concentration increased in anoxic reactors that $NH_4-N$ concentration of feed sufficiently converted into nitrate through nitrification. As a result, packing 20% BCM to an aerobic reactor with HRT of 1.3 hr of anoxic reactor in $A^2/O$ system can achieve a similar level of nitrogen removal efficiency in $A^2/O$ system which the aerobic reactor had no BCM and HRT of 2 hr for anoxic reactor is maintained.

메쉬 침지여과분리형 회분식 생물반응조를 이용한 PEG제거의 기초 연구 (Fundamental Study on the Removal Properties of Polyethylene Glycols by Mesh Filtration Batch Bio-reactor)

  • 정용준
    • 한국물환경학회지
    • /
    • 제25권4호
    • /
    • pp.502-506
    • /
    • 2009
  • The removal properties of Polyethylene glycols (PEGs) known as the important group of synthetic polymers of ethylene oxide were examined by the bio-reactor equipped with a mesh filter module. PEG-1000 and PEG-2000 were fairly removed on the basis of TOC, which were 75.1% and 51.6%, respectively. In the case of PEG-20000, the removal efficiency of TOC was less than 15.2% and the favorable acclimation of microbes was not obtained. It was suggested that this system could effectively maintain microbes for the biodegradation of low molecular weight of PEG and TOC removal was significantly influenced by PEG molecular weight.

Exploring a zero food waste system for sustainable residential buildings in urban areas

  • Oh, Jeongik;Lee, Hyunjeong
    • Environmental Engineering Research
    • /
    • 제23권1호
    • /
    • pp.46-53
    • /
    • 2018
  • This study explores the environmentally innovative and low-impact technology, a zero food waste system (ZFWS) that utilizes food waste and converts it into composts or biofuels and curtails carbon emissions. The ZFWS not just achieves food waste reductions but recycles food waste into fertilizer. Based on a fermentation-extinction technique using bio wood chips, the ZFWS was employed in a field experiment of the system installed in a large-scale apartment complex, and the performance of the system was examined. The on-site ZFWS consisted of three primary parts: 1) a food waste slot into which food waste was injected; 2) a fermentation-extinction reactor where food waste was mixed with bio wood chips made up of complex enzyme and aseptic wood chips; and 3) deodorization equipment in which an ultraviolet and ozone photolysis method was employed. The field experiment showed that food waste injected into the ZFWS was reduced by 94%. Overall microbial activity of the food waste in the fermentation-extinction reactor was measured using adenosine tri-phosphate (ATP), and the degradation rate of organic compounds, referred to as volatile solids, increased with ATP concentration. The by-products generated from ZFWS comply with the national standard for organic fertilizer.