• Title/Summary/Keyword: bio-reactor

Search Result 229, Processing Time 0.031 seconds

Study on the Systematic Technology of Promoting Purification for the Livestock Wastewater and Reuse

  • Okada, Yoshiichi;Shim, Jae-Do;Mitarai, Masahumi;Kojima, Takayuki;Gejima, Yoshinori
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.692-700
    • /
    • 1996
  • The objective of this study is to develop a systematic purification plant using the metabolism of aerobic microorganisms. This system is subsequently aerated and continuously removes suspended solids and settling sludges caused by aerating pressure at the bottom of a lower pipe (i.e., Continuous Removal of Suspended solids and Settling sludges, CRSS). The CRSS plants are brought out by introducing fine air bubbles into the liquid phase of a lower pipe in the bio-reactor. These plant uses aeration pipe, with multiple inlets to sweep the floor of bio-reactor tank, instead of the conventional scraper mechanisms. The principal advantage of this system is that it can continuously remove very small or light particles that settles completely within a short time. Once the particles have been floated to the surface, they can be moved into the pipe and collected in the settling tank by sequently aerated pressure. The experimental results shows that about 99.0% of the biochemical oxygen demand(BOD), 99.3% of the suspended solid(SS), 92.3% of the total nitrogen(T-N), 99.0% of the turbidity(TU), 100% of the total coliform(TC)and ammonia was respectively removed during aerobic digestion for 9 days. These result indicates that the CRS S plants are very effective for reduction and deodorization of swine wastewater contaminants, and the efflux from CRS S can either be discharged in the river or used as nutrient solution of formulation for plant growth factories. The developed CRSS plant proved to be flexible and it can simply be adapted to any type of biological waste treatment problem.roblem.

  • PDF

Effect of current density and contact time on membrane fouling in electrocoagulation-MBR and their kinetic studies on fouling reduction rate (전기응집-MBR 공정의 전류밀도와 접촉시간이 막 오염에 미치는 영향과 막 오염 저감 속도론적 고찰)

  • Um, Se-Eun;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.321-328
    • /
    • 2017
  • Recently EC-MBR (Elctrocoagulation - Membrane Bio Reactor) has been suggested as one of alternative processes to overcome membrane fouling problems. Most important operational parameters in the EC-MBR are known to current density and contact time. Their effect on membrane filtration performances has been reported well, however, quantitative interrelationship between both parameters not been investigated yet. The purpose of this study is to give a kinetic model suggesting the current density and the contact time required to reduce the membrane fouling. The 4 different set of current densities (2.5, 6, 12 and $24A/m^2$) and contact times (0, 2, 6 and 12 hr) were selected as operational parameters. After each electro-coagulation under the 16 different conditions, a series of membrane filtration was carried out. The membrane fouling decreased as the current density and contact time increased, Total fouling resistances under different conditions, $R_t(=R_c+R_f)$ were calculated and compared to those of the controls ($R_0$), which were calculated from the data of experiments without electro-coagulation. A kinetic approach for the fouling reduction rate ($R_t/R_0$) was carried out and the equation ${\rho}^{0.46}_it=7.0$ was obtained, which means that the product of current density and the contact time needed to reduce the fouling in certain amounts (in this study, 10% of fouling reduction) is always constant.

A Study on the Removal Efficiency of VOCs and Operating Characteristics by Using of Bioscrubber Trickling Filter(BSTE) (Bioscrubber Trickling Filter(BSTF)의 VOCs 제거 및 운전 특성에 관한 연구)

  • Park, Jin-Do;Suh, Jung-Ho;Lee, Hak-Sung
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.309-315
    • /
    • 2005
  • Volatile organic compounds (VOCs) and odor materials are major sources of air pollution in Ulsan city, where much chemical plants are located. Therefore, it is necessary to develop a new reactor which can remove VOCs and odor materials effectively and be equipped at the end of pipe easily. A modified reactor (bioscrubber trickling filter, BSTF), which have both characteristics of biofilter and bioscrubber, was developed and tested on its reactivity with several VOCs using two types of media, fiber and activated carbon 4- ceramic(A/C). It was observed that the removal efficiencies of several types of VOCs such as acetaldehyde, ethylalcohol, butanol, diethylamine and triethylamine were up to $95\%$ when they had about 100 ppm of initial concentration and 80 seconds of residence time. Good attachment of microorganisms to both media, where it is thought the reaction efficiency can be determined according to the amount of microorganisms attachment, observed with scanning electron microscopy(SEM). Initial pressure drops of the packed bed with both media were 229 $mmH_2O/m$ at A/C column and 670 $mmH_2O/m$, respectively. However, maximum pressure drop of fiber column during the operation was over 1,647 $mmH_2O/m$. Therefore, it was thought that the fiber material would not suitable to use in the local plant as a packed bed media.

Preliminary Studies for Efficient Treatment of Wastewater Milking Parlor in Livestock Farm (젖소 착유세정폐수의 효율적인 정화처리를 위한 기초연구)

  • Jang, Young Ho;Lee, Soo Moon;Kim, Woong Su;Kang, Jin Young
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.500-507
    • /
    • 2020
  • This study examined the wastewater at a livestock farm, and found that the dairy wastewater from the milking parlor had a lower concentration than the piggery wastewater, and that it was produced at a rate under 1.3 ㎥/day in a single farmhouse. The amount of dairy wastewater was determined based on the performance of the milking machine, the maintenance method of the milking parlor, and the amount of milk production allocated for each farmhouse, not by the area. The results confirmed that both dairy wastewater treatment processes, specifically those using Hanged Bio-Compactor (HBC) and Sequencing Batch Reactor (SBR), can fully satisfy the water quality standards of discharge. The dairy wastewater has a lower amount and concentration than piggery wastewater, meaning it is less valuable as liquid fertilizer, but it can be easily degraded using the conventional activated sludge process in a public sewage treatment plant. Therefore, discharging the dairy wastewater after individual treatment was expected to be a more reasonable method than consigning it to the centralized wastewater treatment plant. The effluent after the SBR process showed a lower degree of color than the HBC effluent, which was attributed to biological adsorption. In the case of the milking parlor in the livestock farm, the concentrations of the effluents obtained after HBC and SBR treatments both satisfied water quality standards for the discharge of public livestock wastewater treatment plants at 99% confidence intervals, and the concentrations of total nitrogen and phosphorous in untreated wastewater were even lower than the water quality standards of discharge. Therefore, we need to discuss strengthening the water quality standards to reduce environmental pollution.

Evaluation of Fermentation Extinction Rate of Food Waste according to the Various Types of Wood Chip with Different Pore Structures (목질세편 세공구조에 따른 음식물쓰레기의 발효·소멸효율 평가)

  • Oh, Jeong-Ik;Kim, Hyo-Jin
    • Land and Housing Review
    • /
    • v.3 no.3
    • /
    • pp.299-305
    • /
    • 2012
  • Various types of bio wood chip for fermentation-extinction of food waste was investigated by comparing their different pore structure with the performance of weight loss rate and microbial activity. The fermentation-extinction of food waste with bio wood chip was examined by adding 700~1,500g of food waste every day during 15 days to the fermentation-extinction reactor with condition of $30{\sim}50^{\circ}C$ temperature and 30~70% humidity, where 1,500g of bio wood chips were existed. The bio wood chips used in this experiment were categorized into 4 different types; microbial-mixing type(A biochip), macro pore type(B biochip) under $2{\mu}m$ of pore size, micro pore type of wood-chips(C biochip) under $0.1{\mu}m$ of pore size, viscous & sticky type(D biochip). As a result, A, B, C, D bio wood chip exhibited 85%, 63%, 92%, 73% weight loss of food waste with fermentation-extinction. The maximum weight loss of food waste was obtained at the fermentation-extinction experiments by using C bio wood chip. On the other hands, the maximum ratio of ATP to COD and TN was obtained from $3.00{\times}10^{-10}$ and $2.31{\times}10^{-11}$ in the case of C bio wood chip, comparing with other types of bio wood chip. Consequently, the performance of weight loss rate was affected with the micro pore structure of bio wood chip which have an advantage of extensive microbial activity space in the fermentation-extinction of food waste.

Simulation and model validation of Biomass Fast Pyrolysis in a fluidized bed reactor using CFD (전산유체역학(CFD)을 이용한 유동층반응기 내부의 목질계 바이오매스 급속 열분해 모델 비교 및 검증)

  • Ju, Young Min;Euh, Seung Hee;Oh, Kwang cheol;Lee, Kang Yol;Lee, Beom Goo;Kim, Dae Hyun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.200-210
    • /
    • 2015
  • The modeling for fast pyrolysis of biomass in fluidized bed reactor has been developed for accurate prediction of bio-oil and gas products and for yield improvement. The purpose of this study is to analyze and to compare the CFD(Computational Fluid Dynamics) simulation results with the experimental data from the CFD simulation results with the experimental data from the reference(Mellin et al., 2014) for gas products generated during fast pyrolysis of biomass in fluidized bed reactor. CFD(ANSYS FLUENT v.15.0) was used for the simulation. Complex pyrolysis reaction scheme of biomass subcomponents was applied for the simulation of pyrolysis reaction. This pyrolysis reaction scheme was included reaction of cellulose, hemicellulose, lignin in detail, gas products obtained from pyrolysis were mainly $CO_2$, CO, $CH_4$, $H_2$, $C_2H_4$. The deviation between the simulation results from this study and experimental data from the reference was calculated about 3.7%p, 4.6%p, 3.9%p for $CH_4$, $H_2$, $C_2H_4$ respectively, whereas 9.6%p and 6.7%p for $CO_2$ and CO which are relatively high. Through this study, it is possible to predict gas products accurately by using CFD simulation approach. Moreover, this modeling approach should be developed to predict fluidized bed reactor performance and other gas product yields.

The Effect of the Attached Growth in Aerobic Reactor on Nitrogen Removal in A2/O processes (포기조에 충진된 고정상 담체가 A2/O공정에서 질소제거에 미치는 영향)

  • Whang, Gye-Dae;Bae, Sung-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1022-1030
    • /
    • 2006
  • Activated sludge reactors maintaining an MLSS of 3,000 mg/L and packed Bio Contact Media (BCM fixed beds) was studied in lab-scale to determine the optimal packing ratio and an HRT of aerobic reactor in terms of organic removal, nitrification, denitrification efficiencies. At all HRTs of 3 hr, 5 hr, 7 hr respectively, reactors without BCM, control reactors, had the lowest TCODcr removal efficiency about 74.6%, and reactors with the BCM packing ratios of 10%, 15%, 20% had a greater TCODcr removal efficiency above 81.4%. As HRT decreased, the TCODcr removal efficiency decreased also in all reactors. However, a better utilization of TCODcr even at a higher organic loading was observed in reactors with BCM. The nitrification efficiency at all reactors was greater than 94%, and reactor with 20% packing of BCM had the highest nitrification efficiency at 97.9% while the TKN loading increased at $0.085mgTKN/m^3{\ast}day$ as HRT decreased, In terms of denitrification efficiency, the reactor without BCM ranged from 11.6% to 13.7%, and the reactors with BCM ranged from 28.3% to 63.4% which suggests that the more BCM is packed in the reactors, the higher the denitrification efficiency is achieved. Two parallel $A^2/O$ systems maintaining an MLSS of 3,000 mg/L were operated to investigate the effect of BCM packing ratio of 20% on organic removal, nitrification, denitrification efficiencies. Packing with BCM in system of aerobic reactor affected the SCODcr removal efficiency that increased from 73% to 78%. The nitrification efficiency for both systems with or without BCM was greater than 95%. The denitrification efficiency of systems with BCM and without BCM was 85.8% and 81.8%, respectively which appears that the denitrification efficiency was increased slightly by packing BCM. Compared denitrification efficiency in $A^2/O$ system to previous experimental study with activated sludge reactors operates with the same HRT $A^2/O$ system showed only 29% greater denitrification efficiency. It suggests that $A^2/O$ system with BCM can achieve a similar level of denitrification efficiency when the HRT of anoxic reactor is decreased to some extent.

Reductive Dechlorination of Chlorinated Phenols in Bio-electrochemical Process using an Electrode as Electron Donor (전극을 전자공여체로 이용한 생물전기화학공정에서의 염소화페놀의 탈염소화)

  • Jeon, Hyun-Hee;Pak, Dae-Won
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.134-138
    • /
    • 2007
  • It was investigated whether an electrode could serve as an electron donor for biological reductive dechlorination of chlorinated phenols in the bio-electrochemical process. There was no dechlorination in the absence of current and scanning electron microscope image showed that the electrode surface was covered with microorganisms. As a result, the electrode attached cells was responsible for reductive dechlorination. Also, initial high chlorinated phenol concentration such as $437mg/{\ell}$ was rapidly reduced within 5 hours. The maximum dechlorination rate using Monod equation was $5.95mg{\ell}$-h($cm^2$ (electrode surface area)) in the bio-electrochemical reactor.

Decomposition of PET in High Pressure Subcritical Water (고압 아임계수 내에서 PET의 분해)

  • Chung, Seung-Hee;Lee, Jung-Hoon;Shim, Jae-Jin;Kim, Jae-Seong;Kim, Sunwook
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.709-714
    • /
    • 2002
  • To investigate the decomposition kinetics of poly(ethylene terephthalate) the high pressure molten-polymer injector has been devised. Using the experimental apparatus equipped with batch reactor and high pressure molten-polymer injector the decomposition of PET has been performed at constant pressure of 250 bar and 300, 320, $340^{\circ}C$, respectively. At each temperature conditions the conversions after initial 1 minute have shown very high values such as 76-90%. As the temperature increases the conversion reaches more than 98% at 10 minutes. Based on the second order reaction model the reaction rate constants have been obtained. We can calculate the conversions within 2% errors utilizing optimized rate constants. The activation energy for the decomposition of PET at subcritical conditions has shown to be 54.4 kJ/mol.

Catalysts for Hydroisomerization of Synthesis-Oil for Bio-jet fuel Production (Bio-jet fuel 제조용 합성원유 수첨이성화 촉매)

  • Yun, So-Young;Lee, Eun-Ok;Park, Young-Kwon;Jeon, Jong-Ki;Jeong, Soon-Yong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.795-796
    • /
    • 2010
  • Interest has been increasing worldwide in Fischer-Tropsch synthesis (F-T) as a method of producing synthetic liquid fuels from biomass. Hydroisomerization of $C_7-C_{15}$ paraffins applies to production of diesel fuel with high cetane number and improved cold flow properties, such as viscosity, pour point and freezing point. The commercial products such as fuel jet produced from F-T synthesis should have low freezing and pour points. In this study, our major aim is to develop a catalyst for hydroisomerization of synthesis-oil for bio-jet fuel. Effects of zeolites and platinum loading on hydroisomerization of dodecane were investigated as a model reaction in a batch reactor.

  • PDF