• Title/Summary/Keyword: bio-potential

Search Result 1,477, Processing Time 0.171 seconds

A Multiplex PCR Assay for the Detection of Food-borne Pathogens in Meat Products

  • Kim, Hyoun-Wook;Kim, Ji-Hyun;Rhim, Seong-Ryul;Lee, Kyung-A;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.590-596
    • /
    • 2010
  • Meat and meat products are a potential source of food-borne pathogens, including Staphylococcus aureus, Salmonella spp., Escherichia coli O157:H7, and Bacillus cereus. A sensitive and specific PCR assay for the detection of these pathogens in meat and meat products was developed in this study, as part of a broader effort to reduce the potential health hazards posed by these pathogens. Initially, PCR conditions were standardized with purified DNA. Under standard conditions, the detection level for PCR was as low as 10 pg of purified bacterial DNA. After overnight growth of bacteria in a broth medium, as few as $10^2$ CFU of bacteria were detected by PCR assay. The primers employed in the PCR assay were found to be highly specific for individual organisms, and evidenced no cross-reactivity with heterologous organisms. Additionally, the multiplex PCR assays also amplified some target genes from the four pathogens, and multiplex amplification was obtained from as little as 10 pg of DNA, thus illustrating the excellent specificity and high sensitivity of the assay. In conclusion, this PCR-based technique provides a sensitive and specific method for the detection of S. aureus, Salmonella spp., E. coli O157:H7, and B. cereus in meat and meat products.

Transcriptome Profiling and In Silico Analysis of the Antimicrobial Peptides of the Grasshopper Oxya chinensis sinuosa

  • Kim, In-Woo;Markkandan, Kesavan;Lee, Joon Ha;Subramaniyam, Sathiyamoorthy;Yoo, Seungil;Park, Junhyung;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1863-1870
    • /
    • 2016
  • Antimicrobial peptides/proteins (AMPs) are present in all types of organisms, from microbes and plants to vertebrates and invertebrates such as insects. The grasshopper Oxya chinensis sinuosa is an insect species that is widely consumed around the world for its broad medicinal value. However, the lack of available genetic information for this species is an obstacle to understanding the full potential of its AMPs. Analysis of the O. chinensis sinuosa transcriptome and expression profile is essential for extending the available genetic information resources. In this study, we determined the whole-body transcriptome of O. chinensis sinuosa and analyzed the potential AMPs induced by bacterial immunization. A high-throughput RNA-Seq approach generated 94,348 contigs and 66,555 unigenes. Of these unigenes, 36,032 (54.14%) matched known proteins in the NCBI database in a BLAST search. Functional analysis demonstrated that 38,219 unigenes were clustered into 5,499 gene ontology terms. In addition, 26 cDNAs encoding novel AMPs were identified by an in silico approach using public databases. Our transcriptome dataset and AMP profile greatly improve our understanding of O. chinensis sinuosa genetics and provide a huge number of gene sequences for further study, including genes of known importance and genes of unknown function.

Characterization of PAH (Polycyclic Aromatic Hydrocarbon)-Degrading Bacteria Isolated from Commercial Gasoline (상용 휘발유로부터 분리한 다환 방향족 탄화수소(PAH) 분해 세균의 특성)

  • Kwon, Tae-Hyung;Woo, Jung-Hee;Park, Nyun-Ho;Kim, Jong-Shik
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.244-251
    • /
    • 2015
  • BACKGROUND: Recent studies have described the importance of bacteria that can degrade polycyclic aromatic hydrocarbons (PAHs). Here we screened bacterial isolates from commercial gasoline for PAH degraders and characterized their ability to degrade PAHs, lipids and proteins as well as their enantioselective epoxide hydrolase activity, salt tolerance, and seawater survival. METHODS AND RESULTS: One hundred two bacteria isolates from commercial gasoline were screened for PAH degraders by adding selected PAHs on to the surface of agar plates by the sublimation method. A clear zone was found only around the colonies of PAH degraders, which accounted for 13 isolates. These were identified as belonging to Bacillus sp., Brevibacterium sp., Micrococcus sp., Corynebacterium sp., Arthrobacter sp., and Gordonia sp. based on 16S rRNA sequences. Six isolates belonging to Corynebacterium sp., 3 of Micrococcus sp., Arthrobacter sp. S49, and Gordonia sp. H37 were lipid degraders. Arthrobacter sp. S49 was the only isolate showing high proteolytic activity. Among the PAH-degrading bacteria, Arthrobacter sp. S49, Brevibacterium sp. S47, Corynebacterium sp. SK20, and Gordonia sp. H37 showed enantioselective epoxide hydrolase activity with biocatalytic resolution of racemic styrene oxide. Among these, highest enantioselective hydrolysis activity was seen in Gordonia sp. H37. An intrinsic resistance to kanamycin was observed in most of the isolates and Corynebacterium sp. SK20 showed resistance to additional antibiotics such as tetracycline, ampicillin, and penicillin. CONCLUSION: Of the 13 PAH-degraders isolated from commercial gasoline, Arthrobacter sp. S49 showed the highest lipid and protein degrading activity along with high active epoxide hydrolase activity, which was the highest in Gordonia sp. H37. Our results suggest that bacteria from commercial gasoline may have the potential to degrade PAHs, lipids, and proteins, and may possess enantioselective epoxide hydrolase activity, high salt tolerance, and growth potential in seawater.

The Interaction Potential Functions in an Electrolyte Protein Solution

  • Jee, Nam-Yong;Kim, Jae-Jun
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.654-658
    • /
    • 2006
  • Recent developments in equations of state for molecular fluids have demonstrated the feasibility of using the hard-sphere equation to describe the effects of repulsive forces in simple fluids. By including a suitable term for attractive forces, most conveniently a uniform background potential, the properties of bio-macromolecular interaction can be roughly calculated. However, the choice of the potential used in perturbed hard-sphere chain (PHSC) theory for describing the attractions between macromolecules is rather complicated. For hard-sphere chains, the prediction accuracy from each model strongly depends on the choice of potential function.

Auditory Evoked Skin Potential in Normal Subjects (정상 성인에서 청성유발 피부전위)

  • Heo, Seung-Deok;Jung, Dong-Keun;Suh, Duk-Joon;Kim, Gwang-Nyeon;Kim, Gi-Ryon;Kang, Myung-Koo;Kim, Lee-Suk
    • Speech Sciences
    • /
    • v.12 no.2
    • /
    • pp.81-88
    • /
    • 2005
  • Electrodermal activity(EDA) is a bio-electric signal which occurs at the skin surface during the sweating. EDA reflects the activity of the sympathetic axis of the autonomic nervous system. EDA is associated with the eccrine sweat gland at the palmar and plamar surface. This study was aimed to characterize the relationship between EDA and auditory stimulus intensities. Acoustic stimulus used in this study were 500 Hz, 1 kHz, 2 kHz of narrow band noise, which were representative of speech frequencies in audible range. Stimulus intensity between 90 and 30 dB in 10 dB within dynamic range. After deriving the minimum stimulus intensity(threshold of skin potential) which elicited skin potential, and then the latency and amplitude were derived from waveform of skin potential, each latency and amplitude were compared to stimulus intensity. The waveform of skin potential were recorded stably, and the threshold of skin potential appeared nearly the hearing threshold level of the participant. The latency was decreased and the amplitude was increased according to the increase of the stimulus intensity. These results suggest that auditory evoked skin potential can be applicable to auditory assessment and audiological diagnosis tool.

  • PDF

Anti-Oxidative and Anti-Inflammatory Activities of Seven Medicinal Herbs including Tetrapanax papyriferus and Piper longum Linne (통초, 필발을 포함한 7종 한약재 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Oh, You Na;Lee, Ji Young;Son, Byung Yil;Choi, Woobong;Lee, Eun-Woo;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.253-262
    • /
    • 2013
  • In this study, we analyzed the anti-oxidative and anti-inflammatory activities of seven medicinal herbs. All extracts of the tested herbs, Euryale ferox Salisbury, Echinops setifer Iljin, Amomum cardamomum Linne, Tetrapanax papyriferus, Illicium verum Hook. f., Typha orientalis Presl, and Piper longum Linne, exhibited potent anti-oxidative activity as confirmed by DPPH radical scavenging capacity. Lipopolysaccharide (LPS) induced nitric oxide (NO) production, in the RAW 264.7 cell line, was also ameliorated by all extracts' treatments in a dose dependent manner. NO suppressive activity originated from the inhibition of inducible nitric oxide synthase (iNOS) protein expression by the extracts. Three extracts, E. ferox S., I. verum Hook. f., and P. longum L., possessed suppressive activity against, not only iNOS, but also cycloxygenase 2 (COX-2) protein expression. These three extracts may then serve as potential candidates for non steroidal analgesic inflammation drugs (NSAIDs). Furthermore, all extracts induced anti-oxidative enzyme, heme oxygenase 1, protein expression. Taken together, these results provide an important new insight into the fact that various medicinal herbs possess potent anti-oxidative and anti-inflammatory activities and might be utilized as promising agents in the field of health products. Further studies for the identification of the active compounds from medicinal herbs are clearly needed.

Antioxidant and Anti-Obesity Activities of Polygonum cuspidatum Extract through Alleviation of Lipid Accumulation on 3T3-L1 Adipocytes

  • Choi, Da-Hye;Han, Joon-Hee;Yu, Keun-Hyung;Hong, Min;Lee, Sun-Yeop;Park, Ka-Hee;Lee, Soo-Ung;Kwon, Tae-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.21-30
    • /
    • 2020
  • Natural products are widely used due to their various biological activities which include anti-inflammatory, antioxidant, and anti-obesity effects. In this study, we determined the antioxidative and anti-obesity effects of Polygonum cuspidatum 50% ethanol extract (PEE). The antioxidative effect of PEE was evaluated using its radical scavenging activity, total phenolic content, and reducing power. The anti-obesity effect of PEE was investigated using 3T3-L1 adipocytes. The antioxidative activity of PEE was progressively increased in various concentrations, mainly due to the presence of phenolic compounds. PEE also alleviated lipid accumulation on 3T3-L1 adipocytes and downregulated the mRNA and protein production of adipogenesis-related (SREBP-1c, PPARγ, C/EBPα) and lipogenesis-related (aP2, FAS, ACC) markers. Furthermore, we found that the inhibitory effect on lipid accumulation via PEE was caused by the alleviation of NF-κB, p38 MAPK, ERK1/2, and JNK at the protein level. Taken together, our results imply that PEE is a potential antioxidant that can prevent obesity-associated disorders.

Design of Computer Access Devices for Severly Motor-disability Using Bio-potentials (생체전위를 이용한 중증 운동장애자들을 위한 컴퓨터 접근제어장치 설계)

  • Jung, Sung-Jae;Kim, Myung-Dong;Park, Chan-Won;Kim, Il-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.11
    • /
    • pp.502-510
    • /
    • 2006
  • In this paper, we describe implementation of a computer access device for the severly motor-disability. Many people with severe motor disabilities need an augmentative communication technology. Those who are totally paralyzed, or 'locked-in' cannot use conventional augmentative technologies, all of which require some measure of muscle control. The forehead is often the last site to suffer degradation in cases of severe disability and degenerative disease. For example, In ALS(Amyotrophic Lateral Sclerosis) and MD(Muscular dystrophy) the ocular motorneurons and ocular muscles are usually spared permitting at least gross eye movements, but not precise eye pointing. We use brain and body forehead bio-potentials in a novel way to generate multiple signals for computer control inputs. A bio-amplifier within this device separates the forehead signal into three frequency channels. The lowest channel is responsive to bio-potentials resulting from an eye motion, and second channel is the band pass derived between 0.5 and 45Hz, falling within the accepted Electroencephalographic(EEG) range. A digital processing station subdivides this region into eleven components frequency bands using FFT algorithm. The third channel is defined as an Electromyographic(EMG) signal. It responds to contractions of facial muscles and is well suited to discrete on/off switch closures, keyboard commands. These signals are transmitted to a PC that analyzes in a time series and a frequency region and discriminates user's intentions. That software graphically displays user's bio-potential signals in the real time, therefore user can see their own bio-potentials and control their physiological signals little by little after some training sessions. As a result, we confirmed the performance and availability of the developed system with experimental user's bio-potentials.

Development of a Platform for Natural Killer Cell Therapy with Antiviral Efficacy (항바이러스 효능을 가진 자연살해세포 치료제 플랫폼 개발)

  • Dongsoo Kim;Hyeongseok Yun;Jinhui Lee;Dayoung Yeon;Chi Ho Yu;Se Hum Gu;Young-Jo Song;Jung-Eun Kim;Seung-Ho Lee;Yong Han Lee;Gyeung Haeng Hur;Junghwa Kang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.107-115
    • /
    • 2024
  • Various vaccines were rapidly developed during the COVID-19 pandemic to prevent and treat infections but global infections continue, and concerns about new mutations and infectious diseases persist. Thus, active research focuses on developing, producing, and supplying vaccines and treatments for various infectious diseases and potential pandemics. Natural killer(NK) cells, as innate immune cells, can recognize and eliminate abnormal cells like virus-infected and cancer cells. Hence, their development as anticancer and antiviral treatments is rapidly advancing. In this study, optimal short-term culture conditions were identified for allogeneic NK cells by simplifying the culture process through the isolation of NK cells(referred to as NKi cells) and eliminating CD3+ cells(referred to as CD3- cells). NK cells demonstrated reduced viral titer in injection of NK cells into SARS-CoV-2 infected ACE-tg mice increased survival. The study's findings could form the basis for an antiviral treatment platform that swiftly responds to new viral disease pandemics.

Effects of Concentrations of Nutrient Solution and Cu Stress on the Water Potential, Solute Potential and Turgor Pressure in Hydroponically Grown Muskmelon (양액농도와 Cu 스트레스가 양액재배 머스크멜론의 수분포텐셜, 침투포텐셜 및 팽압에 미치는 영향)

  • 장홍기;정순주
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.65-70
    • /
    • 1996
  • Water potential which is an physical chemistry and thermodynamic indicator expressed water status of plant root, stem and fruit could be use as a useful indicator for growth control of hydroponically grown muskmelon plant. Linear relationship was observed between EC and water potential of nutrient solution, consequently increment of EC related to the decreasing water potential and resulted with the alteration of water potential and solute potential of upper leaves. Rapid reduction in growth was observed in over 5${\mu}{\textrm}{m}$ of Cu concentration in the media and same tendency was recorded in the shoot fresh weight, root dry weight and chlorophyll content. Increment of Cu concentration in the nutrient solution leads to lower the growth rate and then the water potential of upper leaves. Turgor pressure was not affected the growth of hydroponically grown muskmelon and also Cu concentration of nutrient solution was not recognized the direct relationship to the growth characteristics of muskmelon. These results demonstrated that water potential of nutrient solution can be use as an useful indicator for water physiological comparison of plant growth in hydroponically grown muskmelon.

  • PDF