• Title/Summary/Keyword: bio-ion

Search Result 334, Processing Time 0.023 seconds

Purification and Characterization of Anticoagulant Protein from the Tabanus, Tabanus bivittatus

  • Ahn Mi-Young;Hahn Bum-Soo;Lee Pyeong-Jae;Wu Song-Ji;Kim Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.418-423
    • /
    • 2006
  • Tabanus anticoagulant protein (TAP) was isolated from the whole body of the tabanus, Tabanus bivittatus, using three purification steps (ammonium sulfate fractionation, gel filtration on Bio-Gel P-60, and ion exchange chromatography on DEAE Sephadex gel). The purified TAP, with a molecular weight of 65 kDa, was assessed to be homogeneous by SDS-polyacrylamide gel electrophoresis, and an isoelectric point of 7.9 was determined by isoelectric focusing. The internal amino acid sequence of the purified protein was composed of Ser-Leu-Asn-Asn-Gln-Phe-Ala-Ser-Phe-lle-Asp-Lys-Val-Arg. The protein was activated by $Cu^{2+}\;and\;Zn^{2+}$, and the optimal conditions were found to be at pH $3\sim6\;and\;40\sim70^{\circ}C$. Standard coagulation screen assays were used to determine thrombin time and activated partial thromboplastin time. Chromogenic substrate assays were performed for thrombin and factor Xa activity. TAP considerably prolonged human plasma clotting time, especially activated partial thromboplastin time in a dose-dependent manner; it showed potent and specific antithrombin activity in the chromogenic substrate assay. Specific anti-factor Xa activity in TAP was not detected. Overall, this result suggested that TAP has significant anticoagulant activity on blood coagulation system.

Reduced Graphene Oxide Field-effect Transistor as a Transducer for Ion Sensing Application

  • Nguyen, T.N.T.;Tien, Nguyen Thanh;Trung, Tran Quang;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.562-562
    • /
    • 2012
  • Recently, graphene and graphene-based materials such as graphene oxide (GO) or reduced graphene oxide (R-GO) draws a great attention for electronic devices due to their structures of one atomic layer of carbon hexagon that have excellent mechanical, electrical, thermal, optical properties and very high specific surface area that can be high potential for chemical functionalization. R-GO is a promising candidate because it can be prepared with low-cost from solution process by chemical oxidation and exfoliation using strong acids and oxidants to produce graphene oxide (GO) and its subsequent reduction. R-GO has been used as semiconductor or conductor materials as well as sensing layer for bio-molecules or ions. In this work, reduced graphene oxide field-effect transistor (R-GO FET) has been fabricated with ITO extended gate structure that has sensing area on ITO extended gate part. R-GO FET device was encapsulated by tetratetracontane (TTC) layer using thermal evaporation. A thermal annealing process was carried out at $140^{\circ}C$ for 4 hours in the same thermal vacuum chamber to remove defects in R-GO film before deposition of TTC at $50^{\circ}C$ with thickness of 200 nm. As a result of this process, R-GO FET device has a very high stability and durability for months to serve as a transducer for sensing applications.

  • PDF

Removal Characteristic of Acidic Ion in Aqueous Solution by Alumina (알루미나에 의한 수용액 중의 산성이온 제거 특성)

  • Hong, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.454-458
    • /
    • 2007
  • The removal characteristics of ionic species, such as $Ca^{2+}$, $Mg^{2+}$, $Sr^{2+}$, $SO{_4}^{2-}$, $NO{_3}^-$, and $Cl^-$ by adsorption on the alumina were investigated. Alumina precusor powders were prepared from $Al(NO_3)_3{\cdot}9H_2O$ and $NH_4OH$. Alumina materials prepared from the heat treatment in a furnace at $450{\sim}750^{\circ}C$ for 5 h were analysed using FT-IR and the Brunauer-Emmett-Teller (BET) method. The specific surface area of the product particles decreased significantly with treatment temperature. The adsorption capacities of $SO{_4}^{2-}$and $NO{_3}^-$ on alumina were 23 mg/g and 12.4 mg/g, respectively. But, removal efficiencies of $Cl^-$ were less than 4 mg/g. In general, the removal efficiencies of the anion species were decreased with increasing treatment temperature. The best anion removal efficiency was obtained when the alumina was treated under $450^{\circ}C$. Removal efficiencies of $Ca^{2+}$, $Mg^{2+}$, and $Sr^{2+}$ were increased with increasing treatment temperature.

Exposure to Ethyl Carbamate by Consumption of Alcoholic Beverages Imported in Korea

  • Hong, Kwon-Pyo;Kang, Yoon-Seok;Jung, Dong-Chae;Park, Sae-Rom;Yoon, Ji-Ho;Lee, Sung-Yong;Ko, Yong-Seok;Kim, So-Hee;Ha, Sang-Do;Park, Sang-Kyu;Bae, Dong-Ho
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.975-980
    • /
    • 2007
  • Determination of ethyl carbamate content in imported alcoholic beverages in Korea and an exposure assessment were conducted. In gas chromatography/mass spectrometry/selected ion monitoring (GC/MS/SIM) analysis, 2.5-39, 8-263, 6.3-112, 11.3-23.5, 53-94, 8.5-38.5, 7-9.5, 21.3-31.5, 5-832.5, and $10.5-364.8\;{\mu}g/L$ of ethyl carbamate were detected in imported beers, sakes, whiskies, vodkas, Chinese liquors, cognacs, tequilas, rums, liqueurs, and wines, respectively. The exposure assessment indicated that the exposure of Korean adults to ethyl carbamate were lower than 20 ng/kg BW per day, (the virtual safe dose) indicating that the amount of ethyl carbamate exposed through fermented food and alcoholic beverages including imported products are currently in the 'no significant risk level'. However, the present low exposure to ethyl carbamate through the imported alcoholic products was not due to the low contents of ethyl carbamate in imported products, but low consumption of the imported products. Therefore, given increasing importation of alcoholic beverages in Korea, reductions of ethyl carbamate content in imported alcoholic beverages, especially non-distilled products, should be required by regulating limits on the ethyl carbamate content in the imported alcoholic beverages.

The Effect of Pinus Densiflora Gnarl Extract for Pharmacopuncture on Human LDL Oxidation Induced by Free Radical and Metal Ion (송절(松節) 약침액이 자유기와 금속 이온으로 유도된 인체 저밀도 지단백질의 산화 반응에 미치는 효과)

  • Leem, Sun-Hee;Lee, Kang-Pa;Moon, Jin-Young
    • Korean Journal of Acupuncture
    • /
    • v.28 no.2
    • /
    • pp.23-36
    • /
    • 2011
  • 목적 : 이 연구는 관절 및 심혈관계 질환 치료에 사용되는 송절(松節)(Pinus densiflora Gnarl)을 약침용 시료로 조제하여 본 약물의 항산화 효능을 규명하고자 하였으며 이를 다양한 시스템에서 검토하였다. 방법 : $FeCl_2$-ascorbic acid system에서 흰쥐 간조직의 지질과산화 반응을 관찰하였고, Fenton reaction system에서 자유기에 의한 plasmid DNA 분절을 유도하였다. 또한 deoxyribose assay를 통해 hydroxyl radical 소거능을 관찰하였고, NBT reduction assay로 superoxide radical 소거능을 검토하였다. 또한 human low-density lipoprotein(LDL)의 산화를 유도하기 위해 $CuSO_4$와 AAPH를 사용하였으며 relative electrophoretic mobility (REM) assay로 LDL 산화 억제 효능을 대조 항산화물질과 비교 검토하였다. 결과 : 송절 약침액은 자유기에 의한 간조직의 지질과산화(p < 0.01)및 DNA 분절을 현저하게 억제하였으며, hydroxyl radical, superoxide radical (p < 0.01), nitric oxide 및 peroxynitrite를 강하게 소거하였다. 또한 $CuSO_4$ ($IC_{50}=9.2{\pm}0.2\;{\mu}g/ml$)와 AAPH ($IC_{50}=34.8{\pm}5.1\;{\mu}g/ml$)에 의해 유도된 human LDL의 산화를 억제하였고, REM assay에서도 산화 억제 효능을 재확인할 수 있었다. 결론 : 송절 약침액은 활성산소종 및 활성질소종를 소거하였고, 지질과산화를 억제하였으며, 특히 human LDL의 산화적 손상을 방어하였다. 이에 본 약물은 자유기에 의한 심혈관의 산화적 손상을 효과적으로 보호할 것으로 판단된다.

Effect of pH in Sodium Periodate based Slurry on Ru CMP (Sodium Periodate 기반 Slurry의 pH 변화가 Ru CMP에 미치는 영향)

  • Kim, In-Kwon;Cho, Byung-Gwun;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.117-117
    • /
    • 2008
  • In MIM capacitor, poly-Si bottom electrode is replaced with metal bottom electrode. Noble metals can be used as bottom electrodes of capacitors because they have high work function and remain conductive in highly oxidizing conditions. In addition, they are chemically very stable. Among novel metals, Ru (ruthenium) has been suggested as an alternative bottom electrode due to its excellent electrical performance, including a low leakage of current and compatibility to high dielectric constant materials. Chemical mechanical planarization (CMP) process has been suggested to planarize and isolate the bottom electrode. Even though there is a great need for development of Ru CMP slurry, few studies have been carried out due to noble properties of Ru against chemicals. In the organic chemistry literature, periodate ion ($IO_4^-$) is a well-known oxidant. It has been reported that sodium periodate ($NaIO_4$) can form $RuO_4$ from hydrated ruthenic oxide ($RuO_2{\cdot}nH_2O$). $NaIO_4$ exist as various species in an aqueous solution as a function of pH. Also, the removal mechanism of Ru depends on solution of pH. In this research, the static etch rate, passivation film thickness and wettability were measured as a function of slurry pH. The electrochemical analysis was investigated as a function of pH. To evaluate the effect of pH on polishing behavior, removal rate was investigated as a function of pH by using patterned and unpatterned wafers.

  • PDF

Mutational Analysis of Extranodal NK/T-Cell Lymphoma Using Targeted Sequencing with a Comprehensive Cancer Panel

  • Choi, Seungkyu;Go, Jai Hyang;Kim, Eun Kyung;Lee, Hojung;Lee, Won Mi;Cho, Chun-Sung;Han, Kyudong
    • Genomics & Informatics
    • /
    • v.14 no.3
    • /
    • pp.78-84
    • /
    • 2016
  • Extranodal natural killer (NK)/T-cell lymphoma, nasal type (NKTCL), is a malignant disorder of cytotoxic lymphocytes of NK or T cells. It is an aggressive neoplasm with a very poor prognosis. Although extranodal NKTCL reportedly has a strong association with Epstein-Barr virus, the molecular pathogenesis of NKTCL has been unexplored. The recent technological advancements in next-generation sequencing (NGS) have made DNA sequencing cost- and time-effective, with more reliable results. Using the Ion Proton Comprehensive Cancer Panel, we sequenced 409 cancer-related genes to identify somatic mutations in five NKTCL tissue samples. The sequencing analysis detected 25 mutations in 21 genes. Among them, KMT2D, a histone modification-related gene, was the most frequently mutated gene (four of the five cases). This result was consistent with recent NGS studies that have suggested KMT2D as a novel driver gene in NKTCL. Mutations were also found in ARID1A, a chromatin remodeling gene, and TP53, which also recurred in recent NGS studies. We also found mutations in 18 novel candidate genes, with molecular functions that were potentially implicated in cancer development. We suggest that these genes may result in multiple oncogenic events and may be used as potential bio-markers of NKTCL in the future.

Caspase-3-facilitated Stoichiometric Cleavage of a Large Recombinant Polyprotein (카스파제-3 효소를 이용한 폴리-단백질의 정량적 프로세싱 분석)

  • Kim, Moonil
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.385-389
    • /
    • 2015
  • In this study, it is reported that a large polyprotein can be stoichiometrically cleaved by the use of caspase-3-dependent proteolysis. Previously, it has been shown that the proteolytic IETD motif was partially processed when treated with caspase-3, while the DEVD motif was completely cleaved. The cleavage efficiency of the DEVD-based substrate was approximately 2.0 times higher than that of the IETD substrate, in response to caspase-3. Based on this, 3 protein genes of interest were genetically linked to each other by adding two proteolytic cleavage sequences, DEVD and IETD, for caspase-3. Particularly, glutathione-S transferase (GST), maltose binding protein (MBP), and red fluorescent protein (RFP) were chosen as model proteins due to the variation in their size. The expressed polyprotein was purified by immobilized metal ion affinity chromatography (IMAC) via a hexa-histidine tag at the C-terminal end, showing 93 kDa of a chimeric GST:MBP:RFP fusion protein. In response to caspase-3, cleavage products, such as MBP:RFP (68 kDa), MBP (42 kDa), RFP (26 kDa), and GST (25 kDa), were separated from a large precursor GST:MBP:RFP (93 kDa) via SDS-PAGE. The results obtained from this study indicate that a multi-protein can be stoichiometrically produced from a large poly-protein by using proteolytic recognition motifs, such as DEVD and IETD tetra-peptides, for caspase-3.

Cross-linkable Waterborne Polyurethane based on Castor Oil as an Efficient Binder for Silicon Anodes (실리콘 음극용 효과적인 바인더로서 가교결합이 가능한 캐스터 오일 기반의 수분산 폴리우레탄)

  • Lee, Yong Hun;Kim, Eunji;Lee, Jin Hong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.607-612
    • /
    • 2021
  • Silicon (Si) is one of the promising active materials to replace the widely used graphite because of its low electrochemical potential and high theoretical capacity. However, Si anodes still face in problems with the huge volume expansion and continuous decomposition of the electrolyte during repeated charge and discharge processes. To address these issues, a cross-linkable waterborne polyurethane (CWPU) based on a bio-oil, castor oil, was prepared and reacted with Tris(2,3-epoxypropyl) isocyanurate (TGIC) linkers, resulting in the formation of a mechanically robust 3D network structure. Si anodes fabricated with the CWPU-TGIC exhibited stable cycling performances and excellent discharge capacities. The results revealed that the CWPU-TGIC binder efficiently accommodates the large volume change for Si anode during charge and discharge cycles. Overall, the eco-friendly binder shows great promise in improving the electrochemical performances of Si anodes.

Recent Advance in Microbial Fuel Cell based on Composite Membranes (복합막 기반의 미생물 연료전지 연구에 대한 총설)

  • Kim, Se Min;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.120-132
    • /
    • 2021
  • Microbial fuel cell (MFC) is a bio-electrochemical device that generates electricity by utilizing bacterial catalytic activity that degrades wastewater. Proton exchange membrane (PEM) is the core component of MFC that decides its performance, and Nafion membrane is the most widely used PEM. In spite of the excellent performance of Nafion, it has drawbacks such as high cost, biofouling issue, and non-biodegradable property. Recent studies in MFC attempted to synthetize the alternative membrane for Nafion by incorporating various polymers, sulfonating, fluorinating, and doping other chemicals. This review summarizes characteristics and performances of different composite membrane based MFCs, mostly focusing on PEM.