• 제목/요약/키워드: bio organ

검색결과 140건 처리시간 0.031초

Identification of Genes Differentially Expressed in Wild Type and Purkinje Cell Degeneration Mice

  • Xiao, Rui;Park, Youngsook;Dirisala, Vijaya R.;Zhang, Ya-Ping;Um, Sang June;Lee, Hoon Taek;Park, Chankyu
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.219-227
    • /
    • 2005
  • Purkinje cell degeneration (pcd) mice are characterized by death of virtually all cerebellar Purkinje cells by postnatal day 30. In this study, we used DNA microarray analysis to investigate differences in gene expression between the brains of wild type and pcd mice on postnatal day 20, before the appearance of clear-cut phenotypic abnormalities. We identified 300 differentially expressed genes, most of which were involved in metabolic and physiological processes. Among the differentially expressed genes were several calcium binding proteins including calbindin-28k, paravalbumin, matrix gamma-carboxyglutamate protein and synaptotagamins 1 and 13, suggesting the involvement of abnormal $Ca^{2+}$ signaling in the pcd phenotype.

Methylation Pattern of H19 Gene at Various Preimplantation Development Stages of In Vitro Fertilized and Cloned Porcine Embryos

  • Im, Young-Bin;Han, Dong-Wook;Gupta, Mukesh Kumar;Uhm, Sang-Jun;Heo, Young-Tae;Kim, Jin-Hoi;Park, Chan-Kyu;Lee, Hoon-Taek
    • Reproductive and Developmental Biology
    • /
    • 제31권2호
    • /
    • pp.83-90
    • /
    • 2007
  • Insulin-like growth factor II (IGF2) and H19 genes are mutually imprinted genes which may be responsible for abnormalities in the cloned fetuses and offspring. This study was performed to identify putative differentially methylated regions (DMRs) of porcine H19 locus and to explore its genomic imprinting in in vitro fertilized (IVF) and somatic cell nuclear transferred (SCNT) embryos. Based on mice genomic data, we identified DMRs on H19 and found porcine H19 DMRs that included three CTCF binding sites. Methylation patterns in IVF and SCNT embryos at the 2-, 4-, $8{\sim}16$-cells and blastocyst stages were analyzed by BS (Bisulfite Sequencing)-PCR. The CpGs in CTCF1 was significantly unmethylated in the 2-cell stage IVF embryos. However, the 4- (29.1%) and $8{\sim}16$-cell (68.2%) and blastocyst (48.2%) stages showed higher methylation levels (p<0.01). On the other hand, SCNT embryos were unmethylayted ($0{\sim}2%$) at all stages of development. The CpGs in CTCF2 showed almost unmethylation levels at the 2-,4- and $8{\sim}16$-cell and blastocyst stages of development in both IVF ($0{\sim}14.1%$) and SCNT ($0{\sim}6.4%$) embryos. At all stages of development, CTCF3 was unmethylated in IVF ($0{\sim}17.3%$) and SCNT ($0{\sim}1.2%$) embryos except at the blastocyst stage (54.5%) of IVF embryos. In conclusion, porcine SCNT embryos showed an aberrant methylation pattern comprised to IVF embryos. Therefore, we suggest that the aberrant methylation pattern of H19 loci may be a reason for increased abnormal fetus after embryo transfer of porcine SCNT embryos.

Isolation and In vitro Culture of Pig Spermatogonial Stem Cell

  • Han, Su Young;Gupta, Mukesh Kumar;Uhm, Sang Jun;Lee, Hoon Taek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권2호
    • /
    • pp.187-193
    • /
    • 2009
  • The present study identified the favorable conditions for isolation, enrichment and in vitro culture of highly purified, undifferentiated pig spermatogonial stem cell (SSC) lines that proliferate for long periods of time in culture. The colonies displayed morphology similar to miceSSC and were positive for markers of SSC (PGP9.5), proliferating germ cell (PigVASA), pre-meiotic germ cell (DAZL) and pluripotency (OCT4, SSEA-1, NANOG, and SOX2) based on immuno-cytochemistry and RT-PCR. The purity of these colonies was confirmed by negative expression of markers for sertoli cell (GATA4 and SOX9), peritubular myoid cell (${\alpha}$-SMA), differentiating spermatogonial and germ cells (c-KIT). The colonies could be maintained with undifferentiated morphology for more than two months and passaged more than 8 times with doubling time between 6-7 days. Taken together, we conclude that pigSSC could be successfully isolated and cultured in vitro and they possess characteristics similar to miceSSC.

H19 Gene Is Epigenetically Stable in Mouse Multipotent Germline Stem Cells

  • Oh, Shin Hye;Jung, Yoon Hee;Gupta, Mukesh Kumar;Uhm, Sang Jun;Lee, Hoon Taek
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.635-640
    • /
    • 2009
  • Testis-derived germline stem (GS) cells can undergo reprogramming to acquire multipotency when cultured under appropriate culture conditions. These multipotent GS (mGS) cells have been known to differ from GS cells in their DNA methylation pattern. In this study, we examined the DNA methylation status of the H19 imprinting control region (ICR) in multipotent adult germline stem (maGS) cells to elucidate how epigenetic imprints are altered by culture conditions. DNA methylation was analyzed by bisulfite sequencing PCR of established maGS cells cultured in the presence of glial cell line-derived neurotrophic factor (GDNF) alone or both GDNF and leukemia inhibitory factor (LIF). The results showed that the H19 ICR in maGS cells of both groups was hypermethylated and had an androgenetic pattern similar to that of GS cells. In line with these data, the relative abundance of the Igf2 mRNA transcript was two-fold higher and that of H19 was three fold lower than in control embryonic stem cells. The androgenetic DNA methylation pattern of the H19 ICR was maintained even after 54 passages. Furthermore, differentiating maGS cells from retinoic acid-treated embryoid bodies maintained the androgenetic imprinting pattern of the H19 ICR. Taken together these data suggest that our maGS cells are epigenetically stable for the H19 gene during in vitro modifications. Further studies on the epigenetic regulation and chromatin structure of maGS cells are therefore necessary before their full potential can be utilized in regenerative medicine.

Methylation Status of H19 Gene in Embryos Produced by Nuclear Transfer of Spermatogonial Stem Cells in Pig

  • Lee, Hyun-Seung;Lee, Sung-Ho;Gupta, Mukesh Kumar;Uhm, Sang-Jun;Lee, Hoon-Taek
    • Reproductive and Developmental Biology
    • /
    • 제35권1호
    • /
    • pp.67-75
    • /
    • 2011
  • The faulty regulation of imprinting gene lead to the abnormal development of reconstructed embryo after nuclear transfer. However, the correlation between the imprinting status of donor cell and preimplantation stage of embryo development is not yet clear. In this study, to determine this correlation, we used the porcine spermatogonial stem cell (pSSC) and fetal fibroblast (pFF) as donor cells. As the results, the isolated cells with laminin matrix selection strongly expressed the GFR ${\alpha}$-1 and PLZF genes of SSCs specific markers. The pSSCs were maintained to 12 passages and positive for the pluripotent marker including OCT4, SSEA1 and NANOG. The methylation analysis of H19 DMR of pSSCs revealed that the zinc finger protein binding sites CTCF3 of H19 DMRs displayed an androgenic imprinting pattern (92.7%). Also, to investigate the reprogramming potential of pSSCs as donor cell, we compared the development rate and methylation status of H19 gene between the reconstructed embryos from pFF and pSSC. This result showed no significant differences of the development rate between the pFFs ($11.2{\pm}0.8%$) and SSCs ($13.3{\pm}1.1%$). However, interestingly, while the CTCF3 methylation status of pFF-NT blastocyst was decreased (36.3%), and the CTCF3 methylation status of pSSC-NT blastocyst was maintained. Therefore, this result suggested that the genomic imprinting status of pSSCs is more effective than that of normal somatic cells for the normal development because the maintenance of imprinting pattern is very important in early embryo stage.

Relationship between Developmental Ability and Cell Number of Day 2 Porcine Embryos Produced by Parthenogenesis or Somatic Cell Nuclear Transfer

  • Uhm, Sang Jun;Gupta, Mukesh Kumar;Chung, Hak-Jae;Kim, Jin Hoi;Park, Chankyu;Lee, Hoon Taek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권4호
    • /
    • pp.483-491
    • /
    • 2009
  • In vitro produced porcine embryos have potential application in reproductive biotechnology. However, their development potential has been very low. This study evaluated the in vitro developmental ability and quality of cloned and parthenogenetic porcine embryos having 2-4 cells or 5-8 cells on Day 2 of in vitro culture. Analysis of results showed that 2 to 4 cell embryos had higher ability to form blastocysts than 5 to 8 cell embryos (p<0.05). Blastocysts produced from culture of 2 to 4 cell embryos also contained higher cell numbers and had lower BAX:BCLxL transcript ratio than those produced from 5 to 8 cell embryos (p<0.05), thereby suggesting 2 to 4 cell embryos have higher development potential. Further investigation revealed that 5 to 8 cell embryos had higher incidence (100${\pm}$0.0%) of blastomeric fragmentation than 2 to 4 cell embryos (15.2${\pm}$5.5% for parthenogenetic and 27.7${\pm}$7.1% for cloned embryos). This suggests that low development potential of 5 to 8 cell embryos was associated with blastomeric fragmentation. In conclusion, we have shown that morphological selection of embryos based on cell number on Day 2 of in vitro culture could offer a practical and valuable non-invasive means to select good quality porcine embryos.

3D 바이오 프린팅 기술 현황과 응용 (Status and Prospect of 3D Bio-Printing Technology)

  • 김성호;여기백;박민규;박종순;기미란;백승필
    • KSBB Journal
    • /
    • 제30권6호
    • /
    • pp.268-274
    • /
    • 2015
  • 3D printing technology has been used in various fields such as materials science, manufacturing, education, and medical field. A number of research are underway to improve the 3D printing technology. Recently, the use of 3D printing technology for fabricating an artificial tissue, organ and bone through the laminating of cell and biocompatible material has been introduced and this could make the conformity with the desired shape or pattern for producing human entire organs for transplantation. This special printing technique is known as "3D Bio-Printing", which has potential in biomedical application including patient-customized organ out-put. In this paper, we describe the current 3D bio-printing technology, and bio-materials used in it and present it's practical applications.

Derivation of Embryonic Germ Cells from Post Migratory Primordial Germ Cells, and Methylation Analysis of Their Imprinted Genes by Bisulfite Genomic Sequencing

  • Shim, Sang Woo;Han, Dong Wook;Yang, Ji Hoon;Lee, Bo Yeon;Kim, Seung Bo;Shim, Hosup;Lee, Hoon Taek
    • Molecules and Cells
    • /
    • 제25권3호
    • /
    • pp.358-367
    • /
    • 2008
  • The embryonic germ cell (EGCs) of mice is a kind of pluripotent stem cell that can be generated from pre- and post-migratory primordial germ cells (PGCs). Most previous studies on DNA methylation of EGCs were restricted to 12.5 days post coitum (dpc). This study was designed to establish and characterize murine EGC lines from migrated PGCs as late as 13.5 dpc and to estimate the degrees of methylation of their imprinted genes as well as of the non-imprinted locus, Oct4, using an accurate and quantitative method of measurement. We established five independent EGC lines from post migratory PGCs of 11.5-13.5 dpc from C57BL/6 ${\times}$ DBA/2 F1 hybrid mouse fetuses. All the EGCs exhibited the typical features of pluripotent cells including hypomethylation of the Oct4 regulatory region. We examined the methylation status of three imprinted genes; Igf2, Igf2r and H19 in the five EGC lines using bisulfite genomic sequencing analysis. Igf2r was almost unmethylated in all the EGC lines irrespective of the their sex and stage of isolation; Igf2 and H19 were more methylated than Igf2r, especially in male EGCs. Moreover, EGCs derived at 13.5 dpc exhibited higher levels of DNA methylation than those from earlier stages. These results suggest that in vitro derived EGCs acquire different epigenotypes from their parental in vivo migratory PGCs, and that sex-specific de novo methylation occurs in the Igf2 and H19 genes of EGCs.