Browse > Article

Derivation of Embryonic Germ Cells from Post Migratory Primordial Germ Cells, and Methylation Analysis of Their Imprinted Genes by Bisulfite Genomic Sequencing  

Shim, Sang Woo (Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University)
Han, Dong Wook (Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University)
Yang, Ji Hoon (Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University)
Lee, Bo Yeon (Infertility Clinic, Department of Obstetrics and Gynecology, Kyung-Hee Medical Center)
Kim, Seung Bo (Infertility Clinic, Department of Obstetrics and Gynecology, Kyung-Hee Medical Center)
Shim, Hosup (Department of Physiology, School of Medicine, Dankook University)
Lee, Hoon Taek (Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University)
Abstract
The embryonic germ cell (EGCs) of mice is a kind of pluripotent stem cell that can be generated from pre- and post-migratory primordial germ cells (PGCs). Most previous studies on DNA methylation of EGCs were restricted to 12.5 days post coitum (dpc). This study was designed to establish and characterize murine EGC lines from migrated PGCs as late as 13.5 dpc and to estimate the degrees of methylation of their imprinted genes as well as of the non-imprinted locus, Oct4, using an accurate and quantitative method of measurement. We established five independent EGC lines from post migratory PGCs of 11.5-13.5 dpc from C57BL/6 ${\times}$ DBA/2 F1 hybrid mouse fetuses. All the EGCs exhibited the typical features of pluripotent cells including hypomethylation of the Oct4 regulatory region. We examined the methylation status of three imprinted genes; Igf2, Igf2r and H19 in the five EGC lines using bisulfite genomic sequencing analysis. Igf2r was almost unmethylated in all the EGC lines irrespective of the their sex and stage of isolation; Igf2 and H19 were more methylated than Igf2r, especially in male EGCs. Moreover, EGCs derived at 13.5 dpc exhibited higher levels of DNA methylation than those from earlier stages. These results suggest that in vitro derived EGCs acquire different epigenotypes from their parental in vivo migratory PGCs, and that sex-specific de novo methylation occurs in the Igf2 and H19 genes of EGCs.
Keywords
Bisulfite Sequencing; Embryonic Germ Cell(EGCs); Imprint Genes; Methylation; Mouse; Pluripotency; Primordial Germ Cell (PGCs);
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 De Felici, M., and McLaren, A. (1982). Isolation of mouse primordial germ cells. Exp. Cell Res. 142, 476-482   DOI   ScienceOn
2 De Felici, M., and Pesce, M. (1995). Immunoaffinity purification of migratory mouse primordial germ cells. Exp. Cell Res. 216, 277-279   DOI   ScienceOn
3 Do, J., Han, D.W., Gentile, L., Sobek-Klocke, I., Stehling, M., Lee, H.T., and Scholer, H.R. (2007). Erasure of cellular memory by fusion with pluripotent cells. Stem Cells 25, 1013-1020   DOI   ScienceOn
4 Durcova-Hills, G., Tokunaga, T., Kurosaka, S., Yamaguchi, M., Takahashi, S., and Imai, H. (1999). Immunomagnetic isolation of primordial germ cells and the establishment of embryonic germ cell lines in the mouse. Cloning 1, 217-224   DOI   ScienceOn
5 Ginsburg, M., Snow, M.H., and McLaren, A. (1990). Primordial germ cells in the mouse embryo during gastrulation. Development 110, 521-528
6 Hajkova, P., Erhardt, S., Lane, N., Haaf, T., El-Maarri, O., Reik, W., Walter, J., and Surani, M.A. (2002b). Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117, 15-23   DOI   ScienceOn
7 Hogan, B., Beddington, R., Costantini, F., and Lacy, E. (1994). Isolating germ cells from the genital ridge; in Manipulating the Mouse Embryo: A Labolatory Manual, 2nd ed., pp. 166- 168, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
8 Kato, Y., Rideout, W.M., 3rd, Hilton, K., Barton, S.C., Tsunoda, Y., and Surani, M.A. (1999). Developmental potential of mouse primordial germ cells. Development 126, 1823-1832
9 Mayanagi, T., Kurosawa, R., Ohnuma, K., Ueyama, A., Ito, K., and Takahashi, J. (2003). Purification of mouse primordial germ cells by Nycodenz. Reproduction 125, 667-675   DOI   ScienceOn
10 McCarrey, J.R., Hsu, K.C., Eddy, E.M., Klevecz, R.R., and Bolen, J.L. (1987). Isolation of viable mouse primordial germ cells by antibody-directed flow sorting. J. Exp. Zool. 242, 107-111   DOI   ScienceOn
11 Stoger, R., Kubicka, P., Liu, C.G., Kafri, T., Razin, A., Cedar, H., and Barlow, D.P. (1993). Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61-71   DOI   ScienceOn
12 Tada, T., Tada, M., Hilton, K., Barton, S.C., Sado, T., Takagi, N., and Surani, M.A. (1998). Epigenotype switching of imprintable loci in embryonic germ cells. Dev. Genes Evol. 207, 551-561   DOI
13 Frommer, M., McDonald, L.E., Millar, D.S., Collis, C.M., Watt, F., Grigg, G.W., Molloy, P.L., and Paul, C.L. (1992). A genomic sequencing protocol that yields a positive display of 5- methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827-1831
14 Olek, A., Oswald, J., and Walter, J. (1996). A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. 24, 5064-5066   DOI   ScienceOn
15 Durcova-Hills, G., Ainscough, J., and McLaren, A. (2001). Pluripotential stem cells derived from migrating primordial germ cells. Differentiation 68, 220-226   DOI   ScienceOn
16 Durcova-Hills, G., Burgoyne, P., and McLaren, A. (2004). Analysis of sex differences in EGC imprinting. Dev. Biol. 268, 105-110   DOI   ScienceOn
17 Matsui, Y., Toksoz, D., Nishikawa, S., Nishikawa, S., Williams, D., Zsebo, K., and Hogan, B.L. (1991). Effect of Steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature 353, 750-752   DOI   ScienceOn
18 Hajkova, P., el-Maarri, O., Engemann, S., Oswald, J., Olek, A., and Walter, J. (2002a). DNA-methylation analysis by the bisulfite- assisted genomic sequencing method. Methods Mol. Biol. 200, 143-154
19 Labosky, P.A., Barlow, D.P., and Hogan, B.L. (1994). Embryonic germ cell lines and their derivation from mouse primordial germ cells. Ciba Found. Symp. 182, 157-168; discussion 168-178
20 Yamazaki, Y., Mann, M.R., Lee, S.S., Marh, J., McCarrey, J.R., Yanagimachi, R., and Bartolomei, M.S. (2003). Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc. Natl. Acad. Sci. USA 100, 12207-12212
21 Dolci, S., Williams, D.E., Ernst, M.K., Resnick, J.L., Brannan, C.I., Lock, L.F., Lyman, S.D., Boswell, H.S., and Donovan, P.J. (1991). Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature 352, 809-811   DOI   ScienceOn
22 Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe- Nebenius, D., Chambers, I., Scholer, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379-391   DOI   ScienceOn
23 Godin, I., Deed, R., Cooke, J., Zsebo, K., Dexter, M., and Wylie, C.C. (1991). Effects of the steel gene product on mouse primordial germ cells in culture. Nature 352, 807-809   DOI   ScienceOn
24 Grigg, G., and Clark, S. (1994). Sequencing 5-methylcytosine residues in genomic DNA. Bioessays 16, 431-436   DOI   ScienceOn
25 Knowles, B.B., Aden, D.P., and Solter, D. (1978). Monoclonal antibody detecting a stage-specific embryonic antigen (SSEA-1) on preimplantation mouse embryos and teratocarcinoma cells. Curr. Top. Microbiol. Immunol. 81, 51-53
26 Abe, K., Hashiyama, M., Macgregor, G., and Yamamura, K. (1996). Purification of primordial germ cells from TNAPbeta- geo mouse embryos using FACS-gal. Dev. Biol. 180, 468-472   DOI   ScienceOn
27 McLaren, A., and Southee, D. (1997). Entry of mouse embryonic germ cells into meiosis. Dev. Biol. 187, 107-113   DOI   ScienceOn
28 Ferguson-Smith, A.C., Sasaki, H., Cattanach, B.M., and Surani, M.A. (1993). Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362, 751-755   DOI   ScienceOn
29 Labosky, P.A., Barlow, D.P., and Hogan, B.L. (1994). Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin- like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 120, 3197-3204
30 Resnick, J.L., Bixler, L.S., Cheng, L., and Donovan, P.J. (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550-551   DOI   ScienceOn
31 Solter, D., and Knowles, B.B. (1978). Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA 75, 5565-5569
32 Matsui, Y., Zsebo, K., and Hogan, B.L. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841-847   DOI   ScienceOn
33 Stewart, C.L., Gadi, I., and Bhatt, H. (1994). Stem cells from primordial germ cells can reenter the germ line. Dev. Biol. 161, 626-628   DOI   ScienceOn
34 Ueda, T., Abe, K., Miura, A., Yuzuriha, M., Zubair, M., Noguchi, M., Niwa, K., Kawase, Y., Kono, T., Matsuda, Y., et al. (2000). The paternal methylation imprint of the mouse H19 locus is acquired in the gonocyte stage during foetal testis development. Genes Cells 5, 649-659   DOI   ScienceOn
35 Forne, T., Oswald, J., Dean, W., Saam, J.R., Bailleul, B., Dandolo, L., Tilghman, S.M., Walter, J., and Reik, W. (1997). Loss of the maternal H19 gene induces changes in Igf2 methylation in both cis and trans. Proc. Natl. Acad. Sci. USA 94, 10243-10248
36 Lawson, K.A., and Hage, W.J. (1994). Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found. Symp. 182, 68-84; discussion 84-91
37 Bartolomei, M.S., Webber, A.L., Brunkow, M.E., and Tilghman, S.M. (1993). Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7, 1663-1673   DOI   ScienceOn
38 Buehr, M., and McLaren, A. (1993). Isolation and culture of primordial germ cells. Methods Enzymol. 225, 58-77   DOI
39 Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643-655   DOI   ScienceOn
40 Rudnicki, M.A. (1987). Cell culture methods and introduction of differentiation embryonal carcinoma cell lines; in Teratocarcinomas and Embryonic Stem Cells, a Practical Approach. E. J. Robertson, ed. pp. 19-49 (Oxford: IRL Press)
41 Lee, J., Inoue, K., Ono, R., Ogonuki, N., Kohda, T., Kaneko- Ishino, T., Ogura, A., and Ishino, F. (2002). Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 129, 1807-1817
42 Tam, P.P., and Snow, M.H. (1981). Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J. Embryol. Exp. Morphol. 64, 133-147
43 Chiquoine, A.D. (1954). The identification, origin, and migration of the primordial germ cells in the mouse embryo. Anat. Rec. 118, 135-146   DOI   ScienceOn
44 Pesce, M., and De Felici, M. (1995). Purification of mouse primordial germ cells by MiniMACS magnetic separation system. Dev. Biol. 170, 722-725   DOI   ScienceOn