• Title/Summary/Keyword: bio degradation

Search Result 295, Processing Time 0.03 seconds

Degradation Characteristics of Non-degradable Dye in Aqueous Solution by Ozonation (고도산화공정인 오존처리에 의한 난분해성 염료 수용액의 분해특성)

  • Hwang, Se-Wook;Park, Jong-Hwan;Lee, Su-Lim;Eom, Ju-Hyun;Ryu, Sung-Ki;Choi, Ik-Won;Kim, Seong-Heon;Kang, Se-Won;Cho, Ju-Sik;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.58-64
    • /
    • 2020
  • BACKGROUND: Most of the researches on the dye removal using ozonation have been focused on the removal efficiency. However, the research on their removal characteristics and mechanism according to the reaction time has been still insufficient. METHODS AND RESULTS: In this study, the effects of initial pH and dye concentration with reaction time on the degradation characteristics of methyl orange (MO) and methylene blue (MB) by ozonation were evaluated. The degradation efficiency of MB by ozonation increased with increasing pH. On the other hand, the degradation efficiency of MO by ozonation did not show a significant difference with varing pH. The both MO and MB by ozonation were decomposed within 30 min irrespective of the dye concentration, but the decomposition rates of dyes were faster at lower initial dye concentration. The decomposition efficiency of total organic carbon (TOC) in each dye solution by ozonation was low, which was found to be effective for partial decomposition such as decolorization rather than complete degradation of the dye. CONCLUSION: Overall, ozonation was an effective method for removing nondegradable dyes. However, it is necessary to study the optimization of dye degradation under various environmental conditions for ozonation.

Biodegradation effect of cross-cultivated fungi and edible mushrooms on plastic films (식용버섯과 진균 교차 배양을 활용한 플라스틱 필름의 생물학적 분해효과)

  • Doo-Ho Choi;Eunji Lee;Gi-Hong An;Kang-Hyo Lee
    • Journal of Mushroom
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2024
  • Plastics are widely used in industries in human society and because of their structural stability, degradation is a serious global issue. To estimate the degradation of plastic, 31 edible mushrooms were cultured with the selected plastic films (polyethylene [PE], polystyrene [PS], and poly(ethylene terephthalate) [PET]) for 3 months at 25 ℃. Measuring the weight of the films showed that four species of mushrooms, namely Porostereum spadiceum, Ganoderma lucidum, Coprinellus micaceus, and Pleurotus ostreatus, exhibited the highest degrees of plastic degradation. In addition, the mushrooms and fungi that exhibited the most significant plastic degradation were cross-cultured to promote this degradation. As a result, cross-cultivation of G. lucidum and Aspergillus niger showed a weight loss of 2.49% for the PET film. For the PS film, Aspergillus nidulans showed a weight loss of 4.06%. Cross-cultivation of A. nidulans and C. micaceus, which showed a weight loss of 2.95%, was noted as an alternative for PS biodegradation, but is harmful to humans. These bio-degradation effects of edible mushroom will contribute to the development of alternatives for eco-friendly plastic degradation.

Synthesis of New VO(II), Co(II), Ni(II) and Cu(II) Complexes with Isatin-3-Chloro-4-Floroaniline and 2-Pyridinecarboxylidene-4-Aminoantipyrine and their Antimicrobial Studies

  • Mishra, Anand P.;Mishra, Rudra;Jain, Rajendra;Gupta, Santosh
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.20-26
    • /
    • 2012
  • The complexes of tailor made ligands with life essential metal ions may be an emerging area to answer the problems of multi drug resistance. The coordination complexes of VO(II), Co(II), Ni(II) and Cu(II) with the Schiff bases derived from isatin with 3-chloro-4-floroaniline and 2-pyridinecarboxaldehyde with 4-aminoantipyrine have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, molar conductance, electronic spectra, FT-IR, FAB mass and magnetic susceptibility measurements. FAB mass data show degradation of complexes. Both the ligands behave as bidentate and tridentate coordinating through O and N donor. The complexes exhibit coordination number 4, 5 or 6. The Schiff base and metal complexes show a good activity against the bacteria; $Staphylococcus$ $aureus$, $Escherichia$ $coli$ and $Streptococcus$ $fecalis$ and fungi $Aspergillus$ $niger$, $Trichoderma$ $polysporum$, $Candida$ $albicans$ and $Aspergillus$ $flavus$. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases. The minimum inhibitory concentrations of the metal complexes were found in the range 10-40 ${\mu}g/mL$.

Evaluation of Nattokinase for Antithrombotic Effect and Pharmacological Efficacy by a Biological Test and Clinical Trial (동물 및 인체시험을 통한 Nattokinase의 항응고 작용 및 섬유소 용해능 평가)

  • Kim, Jae-Bum;Yoo, Chul-Bae;Shin, Hyun-Man;Jung, Joon-Ki;Jang, Hyung-Wook
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.393-399
    • /
    • 2011
  • Bacillus subtilis natto producing high level of a fibrinolytic enzyme was selected and Ultra Nattokinase$^{(R)}$ was manufactured by fermentation and purification. It was performed the evaluation of the antithrombotic effect of Ultra Nattokinase$^{(R)}$ (20,000 FU/g) with rat blood plasma. The maximum aggregation (inhibition ratio) was 71% (0%), 69% (2.8%), 62% (12.7%), 16% (77.5%) and 9% (87.3%), respectively, in the order of 0, 5, 10, 50 and 100 mg/mL of Ultra Nattokinase$^{(R)}$ solutions. Ultra Nattokinase$^{(R)}$ had antithrombotic effect, which was associated with the suppression of collagen-induced platelet aggregation. Ultra Nattokinase$^{(R)}$ in the topic of the FDP (fibrinogen degradation products) in blood coagulation tests showed a significant increasing trend. And based on the daily record of meal 39 people of ITT (what ?) group consisted with 19 people of NP (what ?) group and 20 people of PN (what ?) group except four people, two people who took vitamin K affecting the experiment and two people who took alcohol, finding to be taken Ultra Nattokinase$^{(R)}$ showed an increase in the FDP value after four weeks. In addition, FDP value of 41 people of ITT group except two people having metabolic syndrome was increased by Ultra Nattokinase$^{(R)}$.

Molecular Characterization of Dissolved Organic Matter Unveils their Complexity, Origin, and Fate in Glacier and Glacial-Fed Streams and Lakes on the Tibetan Plateau

  • Kim, Min Sung;Zhou, Lei;Choi, Mira;Zhang, Yunlin;Zhou, Yongqiang;Jang, Kyoung-Soon
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.192-199
    • /
    • 2021
  • Alpine glaciers harbor a large quantity of bio-labile dissolved organic matter (DOM), which plays a pivotal role in global carbon cycling as glacial-fed streams are headwaters of numerous large rivers. To understand the complexity, origin, and fate of DOM in glaciers and downstream-linked streams and lakes, we elucidated the molecular composition of DOM in two different Tibetan Plateau glaciers, eight glacial-fed streams and five lakes, using an ultrahigh-resolution 15 Tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The compositional changes of the DOM samples revealed that glacier DOM mostly exhibited sulfur-containing organic compounds (CHOS species). We also found that aliphatic formulae contributed more than 50% of the total abundance of assigned molecules in glacier samples, and those compounds were significantly related to CHOS species. The CHO proportions of glacial-fed streams and lakes samples increased with increasing distance from glacial terminals. The relative contribution of terrestrial-derived organics (i.e., lignins and tannins) declined while microbial-originated organics (aliphatics) increased with increasing elevation. This suggested the gradual input of allochthonous materials from non-glacial environment and the degradation of microbe-derived compounds along lower elevations. Alpine glaciers are retreating as a result of climate change and they nourished numerous streams, rivers, and downstream-linked lakes. Therefore, the interpretations of the detailed molecular changes in glacier ice, glacial-fed streams, and alpine lakes on the Tibetan Plateau could provide broad insights for understanding the biogeochemical cycling of glacial DOM and assessing how the nature of DOM impacts fluvial ecosystems.

Geographical features and types and changes of agricultural land uses in North Korea

  • Lee, Kyo-Suk;Ryu, Jin-Hee;Lee, Dong-Sung;Hong, Byeong-Deok;Seo, Il-Hwan;Kim, Sung Chul;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.205-217
    • /
    • 2019
  • The aim of this study was to identify land resources because food production and supply in North Korea have been at risk due to variations in its seasonal climate. More than three-fifths of the soils are locally derived from the weathering of granitic rocks or various kinds of schists developed from crystalline rocks. Well-developed reddish brown soils derived from limestone are found in the North Hwanghae province and in the southern part of the South Pyeongan province. Additionally, a narrow strip of similarly fertile land runs through the eastern seaboard of the Hamgyong and Kangwon Provinces. The loss of clay particles and organic matter are major causes of degradation in the soil physical and chemical properties in North Korea. 75% of the areas converted from forests became croplands, and 69% of the land converted to croplands came from forests. The net forest loss was quite small from the 1990s to the 2000s. However, deforestation in areas with a slightly lower elevation and gentler slope between 1997 and 2014 led to severe soil erosion resulting in a drastic change in the physical and chemical properties of the soil which influenced cropland stability and productivity. Therefore, the drastic changes in land cover as well as in the physical and chemical properties of the soil caused by various geographical features have seriously influenced the productivity of crops in North Korea.

Investigation of Physicochemical Properties of Bio-oils Produced from Pitch Pine (Pinus rigida) at Various Temperatures (열분해 온도에 따른 리기다소나무 바이오오일의 물리·화학적 특성 평가)

  • Kim, Tae-Seung;Kim, Jae-Young;Oh, Shin-Young;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.204-211
    • /
    • 2012
  • In this study, fast pyrolysis of pitch pine (Pinus rigida) was performed in a fluidized bed reactor under the temperature ranges between 400 and $550^{\circ}C$ at the residence time of 1.9 sec. Essential pyrolytic products (bio-oil, biochar, and gas) were produced and their yield was clearly influenced by temperature. The maximum yield of bio-oil was observed to 64.9 wt% (wet basis) at the temperature of $500^{\circ}C$. As pyrolysis temperature increased, the yield of biochar decreased from 36.8 to 11.1 wt%, while gas amount continuously increased from 16.1 to 33.0 wt%. Water content as well as heating value of bio-oils were obviously sensitive to the pyrolysis temperature. The water contents in the bio-oil clearly decreased from 26.1 ($400^{\circ}C$) to 11.9 wt% ($550^{\circ}C$), with increasing the fast pyrolysis temperature, while their higher heating values were increased from 16.6 MJ/kg to 19.3 MJ/kg. According to GC/MS analysis, 22 degradation compounds were identified from the bio-oils and 10 compounds were derived from carbohydrate, 12 compounds were derived from lignin.

A Study on the oxidation characteristics of micro-algal bio diesel derived from Dunaliella tertiolecta LB999 (Dunaliella tertiolecta LB999 유래 바이오디젤의 산화특성 연구)

  • Lee, Don-Min;Lee, Mi-Eun;Ha, Jong-Han;Ryu, Jin-Young;Choi, Chang-Yong;Shim, Sang-Hyuk;Lim, Sang-Min;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Bio diesel has advantages to reduce GHG(Greenhouse Gas) compare with the fossil fuel by using oil comes from plant/animal sources and even waste such as used cook oil. The diversity of energy feeds brings the positive effects to secure the national energy mix. In this circumstance, micro-algae is one of the prospective source, though some technical barriers. We analyzed the bio diesel which was derived from Dunaliella tertiolecta LB999 through the BD100 quality specifications designated by the law. From that result, it is revealed that the oxidation stability is one of the properties to be improved. In order to find the reason for low oxidation stability, we analyzed the oxidation tendency of each FAME components through some methods(EN 14111, EN14112, EN16091). In this study, we could find the higher double bond FAME portion, the more oxidative property(C18:1${\ll}C18:3$) in bio diesel and main unsaturated FAME group is acted as the key component deciding the bio diesel's oxidation stability. It is proved experimentally that C18:3 FAME are oxidized easily under the modified accelerated oxidation test. We also figure out low molecular weight hydrocarbon and FAME were founded as a result of thermal degradation. Some alcohol and aldehydes were also made by FAME oxidation. In conclusion, it is necessary to find the way to improve the micro-algal bio diesel's oxidation stability.

Absorbable Guided Bone Regeneration Membrane Fabricated from Dehydrothermal Treated Porcine Collagen (Dehydrothermal Treatment로 제작한 흡수성 콜라겐 골유도재생술 차단막)

  • Pang, Kang-Mi;Choung, Han-Wool;Kim, Sung-Po;Yang, Eun-Kyung;Kim, Ki-Ho;Kim, Soung-Min;Kim, Myung-Jin;Jahng, Jeong-Won;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.2
    • /
    • pp.112-119
    • /
    • 2011
  • Purpose: Collagen membranes are used extensively as bioabsorbable barriers in guided bone regeneration. However, collagen has different effects on tissue restoration depending on the type, structure, degree of cross-linking and chemical treatment. The purpose of this study was to evaluate the inflammatory reaction, bone formation, and degradation of dehydrothermal treated porcine type I atelocollagen (CollaGuide$^{(R)}$) compared to of the non-crosslinked porcine type I, III collagen (BioGide$^{(R)}$) and the glutaldehyde cross-linked bovine type I collagen (BioMend$^{(R)}$) in surgically created bone defects in rat mandible. Methods: Bone defect model was based upon 3 mm sized full-thickness transcortical bone defects in the mandibular ramus of Sprague-Dawley rats. The defects were covered bucolingually with CollaGuide$^{(R)}$, BioMend$^{(R)}$, or BioGide$^{(R)}$ (n=12). For control, the defects were not covered by any membrane. Lymphocyte, multinucleated giant cell infiltration, bone formation over the defect area and membrane absorption were evaluated at 4 weeks postimplantation. For comparison of the membrane effect over the bone augmentation, rats received a bone graft plus different covering of membrane. A $3{\times}4$ mm sized block graft was harvested from the mandibular angle and was laid and stabilized with a microscrew on the naturally existing curvature of mandibular inferior border. After 10 weeks postimplantation, same histologic analysis were done. Results: In the defect model at 4 weeks post-implantation, the amount of new bone formed in defects was similar for all types of membrane. Bio-Gide$^{(R)}$ membranes induced significantly greater inflammatory response and membrane resorption than other two membranes; characterized by lymphocytes and multinucleated giant cells. At 10 weeks postoperatively, all membranes were completely resorbed. Conclusion: Dehydrotheramal treated cross-linked collagen was safe and effective in guiding bone regeneration in alveolar ridge defects and bone augmentation in rats, similar to BioGide$^{(R)}$ and BioMend$^{(R)}$, thus, could be clinically useful.

Effects of Biodegradable Mulching Film Application on Cultivation of Garlic (마늘 재배시 생분해성 멀칭 필름 이용효과)

  • Lee, Jae Han;Kim, Mok Jong;Kim, Hong Lim;Kwack, Yong Bum;Kwon, Joon Kook;Park, Kyoung Sub;Choi, Hyo Gil;Khoshimkhujaev, Bekhzod
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.326-332
    • /
    • 2015
  • The effect of biodegradable mulching film on the growth and development of garlic were investigated in order to develop eco-friendly weed control techniques. The treatments included biodegradable film (Bio-De) and black (Black-PE), green (Green-PE), transparent (Trans-PE) polyethylene mulching films. Non-mulched, bare soil (Non-mulching) was used as a control. Light transmittance value among tested mulching films was the highest in Trans-PE (86.1%) followed by Bio-DE and Green-PE, and the lowest value was observed for the Black-PE (1.1%). All mulching films without exclusion elevated soil temperature, especially Trans-PE and Bio-DE compared to bare soil. Plant height and mean bulb weight were increased due to mulching films with the highest values observed for Trans-PE and Bio-DE treatments. After seven months of field application there were no significant degradation signs on PE plastic films, whereas it was easy to see horizontal cracks on the Bio-DE film surface after five month of usage.