• Title/Summary/Keyword: bio assay

Search Result 694, Processing Time 0.044 seconds

Molecular cloning and characterization of a soybean GmMBY184 induced by abiotic stresses

  • Chung, Eun-Sook;Kim, Koung-Mee;Lee, Jai-Heon
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.175-181
    • /
    • 2012
  • Drought and high salinity stresses often imposes adverse effects on crop yield. MYB transcription factors have been shown to be an important regulator in defense responses to these environmental stresses. In this study, we have cloned and characterized a soybean gene GmMYB184 (Glycine max MYB transcription factor 184). Deduced amino acid sequences of GmMYB184 show highest homology with that from Vitis vinifera legume plant (75%). Different expression patterns of GmMYB184 mRNA were observed subjected to drought, cold, high salinity stress and abscisic acid treatment, suggesting its role in the signaling events in the osmotic stress-related defense response. Subcellular localization studies demonstrated that the GFP-GmMYB184 fusion protein was localized in the nucleus. Using the yeast assay system, the C-terminal region of GmMYB184 was found to be essential for the transactivation activity. These results indicate that the GmMYB184 may play a role in abiotic stress tolerance in plant.

Evaluation of systemic and mucosal immune responses in mice administered with recombinant Salmonella Typhimurium expressing IutA protein

  • Oh, In-Gyeong;Choi, Minsu;Lee, John Hwa
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.3
    • /
    • pp.163-167
    • /
    • 2013
  • Avian pathogenic Escherichia coli (APEC) are known to cause extraintestinal disease in poultry, leading to substantial losses in the industry. IutA, iron-regulated aerobactin receptor is firmly associated with APEC. To assess the potential of IutA to induce protective immune responses, attenuated Salmonella Typhimurium strain expressing IutA was constructed and administered orally to BALB/c mice. The IutA-specific immune responses were measured with sera, vaginal and fecal samples by an enzyme-linked immunosorbent assay. We found that the Salmonella-IutA vaccine induced significantly higher immune responses as compared to the control inoculated with the attenuated S. Typhimurium containing the plasmid only. The IutA-specific immune responses were increased by second immunization at third week after initial immunization, whereas triple immunization induced lower immune responses than those induced by the double immunization. The Salmonella-IutA vaccine induced a nature of immunity biased to the Th1-type, as judged by the ratio of IutA-specific IgG isotypes (IgG2a/IgG1). Overall, these results suggest that the Salmonella-IutA vaccine appear to be suitable candidate for a vaccine against APEC.

New Lung Cancer Panel for High-Throughput Targeted Resequencing

  • Kim, Eun-Hye;Lee, Sunghoon;Park, Jongsun;Lee, Kyusang;Bhak, Jong;Kim, Byung Chul
    • Genomics & Informatics
    • /
    • v.12 no.2
    • /
    • pp.50-57
    • /
    • 2014
  • We present a new next-generation sequencing-based method to identify somatic mutations of lung cancer. It is a comprehensive mutation profiling protocol to detect somatic mutations in 30 genes found frequently in lung adenocarcinoma. The total length of the target regions is 107 kb, and a capture assay was designed to cover 99% of it. This method exhibited about 97% mean coverage at $30{\times}$ sequencing depth and 42% average specificity when sequencing of more than 3.25 Gb was carried out for the normal sample. We discovered 513 variations from targeted exome sequencing of lung cancer cells, which is 3.9-fold higher than in the normal sample. The variations in cancer cells included previously reported somatic mutations in the COSMIC database, such as variations in TP53, KRAS, and STK11 of sample H-23 and in EGFR of sample H-1650, especially with more than $1,000{\times}$ coverage. Among the somatic mutations, up to 91% of single nucleotide polymorphisms from the two cancer samples were validated by DNA microarray-based genotyping. Our results demonstrated the feasibility of high-throughput mutation profiling with lung adenocarcinoma samples, and the profiling method can be used as a robust and effective protocol for somatic variant screening.

Molecular Basis of Hexanoic Acid Taste in Drosophila melanogaster

  • Roshani Nhuchhen Pradhan;Bhanu Shrestha;Youngseok Lee
    • Molecules and Cells
    • /
    • v.46 no.7
    • /
    • pp.451-460
    • /
    • 2023
  • Animals generally prefer nutrients and avoid toxic and harmful chemicals. Recent behavioral and physiological studies have identified that sweet-sensing gustatory receptor neurons (GRNs) in Drosophila melanogaster mediate appetitive behaviors toward fatty acids. Sweet-sensing GRN activation requires the function of the ionotropic receptors IR25a, IR56d, and IR76b, as well as the gustatory receptor GR64e. However, we reveal that hexanoic acid (HA) is toxic rather than nutritious to D. melanogaster. HA is one of the major components of the fruit Morinda citrifolia (noni). Thus, we analyzed the gustatory responses to one of major noni fatty acids, HA, via electrophysiology and proboscis extension response (PER) assay. Electrophysiological tests show this is reminiscent of arginine-mediated neuronal responses. Here, we determined that a low concentration of HA induced attraction, which was mediated by sweet-sensing GRNs, and a high concentration of HA induced aversion, which was mediated by bitter-sensing GRNs. We also demonstrated that a low concentration of HA elicits attraction mainly mediated by GR64d and IR56d expressed by sweet-sensing GRNs, but a high concentration of HA activates three gustatory receptors (GR32a, GR33a, and GR66a) expressed by bitter-sensing GRNs. The mechanism of sensing HA is biphasic in a dose dependent manner. Furthermore, HA inhibit sugar-mediated activation like other bitter compounds. Taken together, we discovered a binary HA-sensing mechanism that may be evolutionarily meaningful in the foraging niche of insects.

Interaction between odontoblast and bio-calcium phosphate cement reinforced with chitosan (치아모세포와 키토산으로 강화된 생체 적합 칼슘인산시멘트와의 상호작용)

  • Chun, Byung-Do;Kim, Sung-Won;Lee, Sung-Tak;Kim, Tae-Hoon;Lee, Jung-Han;Kim, Gyoo-Cheon;Kim, Yong-Deok;Kim, Uk-Kyu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.5
    • /
    • pp.415-420
    • /
    • 2011
  • Purpose: Calcium phosphate cement (CPC) is one of many useful materials for restoring tooth defects, periodontium and maxillofacial area. Chitosan is a biodegradable material that has been shown to promote the growth and differentiation of osteoblasts in culture. This study examined the interaction between odontoblasts and bio-calcium phosphate cement reinforced with chitosan. Materials and Methods: $5{\times}10^3$ odontoblastic cells were seeded into each well. Various concentrations of bio-calcium phosphate cement reinforced with chitosan (10, 20, 50, 100, 200, 500 ${\mu}g$/ml, 1, 2, 4 mg/ml) were diluted and added to the wells. The well was incubated for 24 h, 48 h and 72 h. After incubation, the number of cells was assessed to determine the cell viability. A cytokinesis-block micronucleus assay and chromosomal aberration test were carried out to estimate the extent of chromosomal abnormalities. Microscopic photographs and RT-PCR were performed to examine the adhesion potential of bio-calcium phosphate cement reinforced with chitosan. Results: Bio-CPC-reinforced chitosan did not show significant cytotoxicity. The number of damaged chromosomes in the cells treated with Bio-CPC-reinforced chitosan was similar to that in the control cells. There was no significant increase in the number of chromosomal aberrations in the Bio-CPC reinforced chitosan exposed cells. Microscopic photographs and RT-PCR confirmed the adhesive potential of bio-CPC reinforced chitosan to odontoblasts. Conclusion: Bio-CPC-reinforced chitosan did not affect the odontoblastic cell viability, and had no significant cytotoxic effect. Bio-CPC-reinforced chitosan showed adhesive potential to odontoblasts. These results are expected form the basis of future studies on the effectiveness of dental restorative materials in Bio-CPC reinforced with chitosan.

Effects of Water Extract of Glycyrrhiza uralensis on $\beta$-Hexosaminidase Release and Expression of the Cytokines of RBL-2H3 Mast Cells (감초 추출물이 RBL-2H3 비만세포에서 $\beta$-hexosaminidase 분비 및 Th2 cytokine mRNA 발현에 미치는 효과)

  • Kim, Jeong-Mi;Kim, Dae-Jung;Kim, Tae-Hyeuk;Baek, Jong-Mi;Kim, Hyun-Sook;Choe, Myeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.4
    • /
    • pp.231-237
    • /
    • 2010
  • The present study was conducted to investigate the anti-allergic reaction with Glycyrrhiza uralensis. We examined cell viability, $\beta$-hexosaminidase release, IL-4 and IL-13 mRNA expression from RBL-2H3 cell after pre-treatment with 0, 100, 250, 500, 1000${\mu}g/m{\ell}$ of Glycyrrhiza uralensis water extracts. Effects of Glycyrrhiza uralensis on the degranulation and pro-inflammatory cytokines (IL-4 and IL-13) expression were evaluated with $\beta$-hexosaminidase assay, and RT-PCR analysis. We observed that Glycyrrhiza uralensis concentrations from 100${\mu}g/m{\ell}$ to 1000${\mu}g/m{\ell}$ had no effect on cell survival. The release of $\beta$-hexosaminidase decreased significantly with all concentrations of Glycyrrhiza uralensis extracts. The expression of the IL-4 and IL-13 mRNA were decreased by Glycyrrhiza uralensis in dose-dependent manner. These results that Glycyrrhiza uralensis has an anti-histamin effects and controls IL-4, IL-13 secretion on allergic reaction.

Monitoring of Cleavage Preference for Caspase-3 Using Recombinant Protein Substrates

  • Park, Kyoung-Sook;Yi, So-Yeon;Kim, Un-Lyoung;Lee, Chang-Soo;Chung, Jin-Woong;Chung, Sang-J.;Kim, Moon-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.911-917
    • /
    • 2009
  • The apoptotic caspases have been classified in accordance with their substrate specificities, as the optimal tetrapeptide recognition motifs for a variety of caspases have been determined via positional scanning substrate combinatorial library technology. Here, we focused on two proteolytic recognition motifs, DEVD and IETD, owing to their extensive use in cell death assay. Although DEVE and IETD have been generally considered to be selective for caspase-3 and -8, respectively, the proteolytic cleavage of these substrates does not display absolute specificity for a particular caspase. Thus, we attempted to monitor the cleavage preference for caspase-3, particularly using the recombinant protein substrates. For this aim, the chimeric GST:DEVD:EGFP and GST:IETD:EGFP proteins were genetically constructed by linking GST and EGFP with the linkers harboring DEVD and IETD. To our best knowledge, this work constitutes the first application for the monitoring of cleavage preference employing the recombinant protein substrates that simultaneously allow for mass and fluorescence analyses. Consequently, GST:IETD:EGFP was cleaved partially in response to caspase-3, whereas GST:DEVD:EGFP was completely proteolyzed, indicating that GST:DEVD:EGFP is a better substrate than GST:IETD:EGFP for caspase-3. Collectively, using these chimeric protein substrates, we have successfully evaluated the feasibility of the recombinant protein substrate for applicability to the monitoring of cleavage preference for caspase-3.

Antimicrobial Properties of Glass Surface Functionalized with Silver-doped Terminal-alkynyl Monolayers

  • Tahir, Muhammad Nazir;Jeong, Daham;Kim, Hwanhee;Yu, Jae-Hyuk;Cho, Eunae;Jung, Seunho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • Glass discs functionalized with alkynyl (GDA) terminated monolayers were prepared and incubated in $AgNO_3$ solution (GDA-Ag). The modified functional glass surfaces were characterized by X-ray photoelectron microscopy (XPS). The potential of GDA and GDA-Ag as antimicrobial surfaces was investigated. Anti-microbial efficacies of GDA against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, and Candida albicans was relatively low ranging from 4.67 to 17.00%. However, the GDA-Ag was very effective and its antimicrobial efficacy ranged from 99.90 to 99.99% against the same set of microbial strains except for C. albicans where it was 95.50%. The durability of the Ag bonded to the terminal alkynyl groups was studied by placing the GDA-Ag in PBS buffer solution (pH 7.4) for two weeks. Initially, the silver release was relatively fast, with 40.05 ppb of silver released in first 24 h followed by a very slow and constant release. To study the potential of GDA-Ag for medical applications, in vitro cytotoxicity of GDA-Ag against Human Embryonic Kidney 293 (HEK293) cell lines was studied using WST-assay. The cytotoxicity of the GDA-Ag was very low (5%) and was almost comparable to the control (blank glass disc) indicating that GDA-Ag has a promising potential for medical applications.

Antioxidant and Whitening Effects of Agrimonia pilosa Ledeb Water Extract (짚신나물 물 추출물의 항산화 활성 및 미백효과에 관한 연구)

  • Kim, Tae-Hyuk;Kim, Jeong-Mi;Baek, Jong-Mi;Kim, Tae-Woo;Kim, Dae-Jung;Park, Jeong-Hae;Choe, Myeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.3
    • /
    • pp.177-184
    • /
    • 2011
  • This study was performed to assess the antioxidant activities and whitening effects of Agrimonia pilosa Ledeb on melanin synthesis. The whitening effects of Agrimonia pilosa Ledeb water extracts were examined by in vitro mushroom tyrosinase assay and B16BL6 melanoma cells. We assessed inhibitory effect of Agrimonia pilosa Ledeb water extract on expression of melanogenic enzyme proteins including tyrosinase, tyrosinase-related protein 1 (TRP-1) and tyrosinase-related protein 2 (TRP-2) in B16BL6 cells. Inhibitory effect of Agrimonia pilosa Ledeb onto free radical generation was determined by measuring DPPH and hydroxyl radical scavenging activitie. Our results indicated that Agrimonia pilosa Ledeb water extract effectively inhibited free radical generation. In DPPH and hydroxy radical scavenging activity, Agrimonia pilosa Ledeb water extract had a potent anti-oxidant activity in a dose-dependent manner. They significantly inhibited tyrosinase activity in vitro and in B16BL6 melanoma cells. Also, Agrimonia pilosa Ledeb suppressed the expression of tyrosinase in B16BL6 melanoma cells. These results show that Agrimonia pilosa Ledeb inhibited melanin production on the melanogenesis. The underlying mechanism of Agrimonia pilosa Ledeb on whitening activity may be due to the inhibition of tyrosinase activity. We suggest that Agrimonia pilosa Ledeb may be useful as new natural active ingredients for antioxidant and whitening cosmetics.

Enzymatic bioconversion of ginseng powder increases the content of minor ginsenosides and potentiates immunostimulatory activity

  • Park, Jisang;Kim, Ju;Ko, Eun-Sil;Jeong, Jong Hoon;Park, Cheol-Oh;Seo, Jeong Hun;Jang, Yong-Suk
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.304-314
    • /
    • 2022
  • Background: Ginsenosides are biologically active components of ginseng and have various functions. In this study, we investigated the immunomodulatory activity of a ginseng product generated from ginseng powder (GP) via enzymatic bioconversion. This product, General Bio compound K-10 mg solution (GBCK10S), exhibited increased levels of minor ginsenosides, including ginsenoside-F1, compound K, and compound Y. Methods: The immunomodulatory properties of GBCK10S were confirmed using mice and a human natural killer (NK) cell line. We monitored the expression of molecules involved in immune responses via enzyme-linked immunosorbent assay, flow cytometry, NK cell-targeted cell destruction, quantitative reverse-transcription real-time polymerase chain reaction, and Western blot analyses. Results: Oral administration of GBCK10S significantly increased serum immunoglobulin M levels and primed splenocytes to express pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ. Oral administration of GBCK10S also activated NK cells in mice. Furthermore, GBCK10S treatment stimulated a human NK cell line in vitro, thereby increasing granzyme B gene expression and activating STAT5. Conclusion: GBCK10S may have potent immunostimulatory properties and can activate immune responses mediated by B cells, Th1-type T cells, and NK cells.