• Title/Summary/Keyword: binomial Weibull distribution

Search Result 7, Processing Time 0.026 seconds

Reliability over time of wind turbines steel towers subjected to fatigue

  • Berny-Brandt, Emilio A.;Ruiz, Sonia E.
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.75-90
    • /
    • 2016
  • A probabilistic approach that combines structural demand hazard analysis with cumulative damage assessment is presented and applied to a steel tower of a wind turbine. The study presents the step by step procedure to compare the reliability over time of the structure subjected to fatigue, assuming: a) a binomial Weibull annual wind speed, and b) a traditional Weibull probability distribution function (PDF). The probabilistic analysis involves the calculation of force time simulated histories, fatigue analysis at the steel tower base, wind hazard curves and structural fragility curves. Differences in the structural reliability over time depending on the wind speed PDF assumed are found, and recommendations about selecting a real PDF are given.

Application of discrete Weibull regression model with multiple imputation

  • Yoo, Hanna
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.325-336
    • /
    • 2019
  • In this article we extend the discrete Weibull regression model in the presence of missing data. Discrete Weibull regression models can be adapted to various type of dispersion data however, it is not widely used. Recently Yoo (Journal of the Korean Data and Information Science Society, 30, 11-22, 2019) adapted the discrete Weibull regression model using single imputation. We extend their studies by using multiple imputation also with several various settings and compare the results. The purpose of this study is to address the merit of using multiple imputation in the presence of missing data in discrete count data. We analyzed the seventh Korean National Health and Nutrition Examination Survey (KNHANES VII), from 2016 to assess the factors influencing the variable, 1 month hospital stay, and we compared the results using discrete Weibull regression model with those of Poisson, negative Binomial and zero-inflated Poisson regression models, which are widely used in count data analyses. The results showed that the discrete Weibull regression model using multiple imputation provided the best fit. We also performed simulation studies to show the accuracy of the discrete Weibull regression using multiple imputation given both under- and over-dispersed distribution, as well as varying missing rates and sample size. Sensitivity analysis showed the influence of mis-specification and the robustness of the discrete Weibull model. Using imputation with discrete Weibull regression to analyze discrete data will increase explanatory power and is widely applicable to various types of dispersion data with a unified model.

Sample size calculations for clustered count data based on zero-inflated discrete Weibull regression models

  • Hanna Yoo
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.55-64
    • /
    • 2024
  • In this study, we consider the sample size determination problem for clustered count data with many zeros. In general, zero-inflated Poisson and binomial models are commonly used for zero-inflated data; however, in real data the assumptions that should be satisfied when using each model might be violated. We calculate the required sample size based on a discrete Weibull regression model that can handle both underdispersed and overdispersed data types. We use the Monte Carlo simulation to compute the required sample size. With our proposed method, a unified model with a low failure risk can be used to cope with the dispersed data type and handle data with many zeros, which appear in groups or clusters sharing a common variation source. A simulation study shows that our proposed method provides accurate results, revealing that the sample size is affected by the distribution skewness, covariance structure of covariates, and amount of zeros. We apply our method to the pancreas disorder length of the stay data collected from Western Australia.

A Simulation Model for the Intermittent Hydrologic Process(I) - Alternate Renewal Process (ARP) and Continuous Probability Distribution - (간헐(間歇) 수문과정(水文過程)의 모의발생(模擬發生) 모형(模型)(I) - 교대재생과정(交代再生過程)(ARP)과 연속확률분포(連續確率分布) -)

  • Lee, Jae Joon;Lee, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.509-521
    • /
    • 1994
  • This study is an effort to develop computer simulation model that produce precipitation patterns from stochastic model. A stochastic model is formulated for the process of daily precipitation with considering the sequences of wet and dry days and the precipitation amounts on wet days. This study consists of 2 papers and the process of precipitation occurrence is modelled by an alternate renewal process (ARP) in paper (I). In the ARP model for the precipitation occurrence, four discrete distributions, used to fit the wet and dry spells, were as follows; truncated binomial distribution (TBD), truncated Poisson distribution (TPD), truncated negative binomial distribution (TNBD), logarithmic series distribution (LSD). In companion paper (II) the process of occurrence is developed by Markov chain. The amounts of precipitation, given that precipitation has occurred, are described by a Gamma. Pearson Type-III, Extremal Type-III, and 3 parameter Weibull distribution. Daily precipitation series model consists of two models, A-Wand A-G model, by combining the process of precipitation occurrence and a continuous probability distribution on the precipitation of wet days. To evaluate the performance of the simulation model, output from the model was compared with historical data of 7 stations in the Nakdong and Seomjin river basin. The results of paper (1) show that it is possible to design a model for the synthetic generation of IX)int precipitation patterns.

  • PDF

Fitting Cure Rate Model to Breast Cancer Data of Cancer Research Center

  • Baghestani, Ahmad Reza;Zayeri, Farid;Akbari, Mohammad Esmaeil;Shojaee, Leyla;Khadembashi, Naghmeh;Shahmirzalou, Parviz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7923-7927
    • /
    • 2015
  • Background: The Cox PH model is one of the most significant statistical models in studying survival of patients. But, in the case of patients with long-term survival, it may not be the most appropriate. In such cases, a cure rate model seems more suitable. The purpose of this study was to determine clinical factors associated with cure rate of patients with breast cancer. Materials and Methods: In order to find factors affecting cure rate (response), a non-mixed cure rate model with negative binomial distribution for latent variable was used. Variables selected were recurrence cancer, status for HER2, estrogen receptor (ER) and progesterone receptor (PR), size of tumor, grade of cancer, stage of cancer, type of surgery, age at the diagnosis time and number of removed positive lymph nodes. All analyses were performed using PROC MCMC processes in the SAS 9.2 program. Results: The mean (SD) age of patients was equal to 48.9 (11.1) months. For these patients, 1, 5 and 10-year survival rates were 95, 79 and 50 percent respectively. All of the mentioned variables were effective in cure fraction. Kaplan-Meier curve showed cure model's use competence. Conclusions: Unlike other variables, existence of ER and PR positivity will increase probability of cure in patients. In the present study, Weibull distribution was used for the purpose of analysing survival times. Model fitness with other distributions such as log-N and log-logistic and other distributions for latent variable is recommended.

Comparison of Two-time Homogeneous Poisson Processes Using Inverse Type Sapling Plans (역샘플링법을 이용한 포와슨과정의 비교)

  • 장중순;임춘우;정유진
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.11 no.17
    • /
    • pp.67-80
    • /
    • 1988
  • This study is concerned with the comparison of two time homogeneous Poisson processes. Traditionally, the methods of testing equality of Poisson processes were based on the binomial distribution or its normal approximations. The sampling plans used in these methods are to observe the processes concurrently over a predetermined time interval, possibly different for each process. However, when the values of the intensities of the processes are small, inverse type sampling plans are more appropriate since there may be cases where only a few or even no events are observed in the predetermined time interval. This study considers 9 inverse type sampling plans for the comparison of two Poisson processes. For each sampling plans considered, critical regions and the design parameters of the sampling plan are determined to guarantee the significance level and the power at some values of the alternative hypothesis. The Problem of comparing of two Weibull processes are also considered.

  • PDF

Comparison of Reliability Estimation Methods for Ammunition Systems with Quantal-response Data (가부반응 데이터 특성을 가지는 탄약 체계의 신뢰도 추정방법 비교)

  • Ryu, Jang-Hee;Back, Seung-Jun;Son, Young-Kap
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.982-989
    • /
    • 2010
  • This paper shows accuracy comparison results of reliability estimation methods for one-shot systems such as ammunitions. Quantal-response data, following a binomial distribution at each sampling time, characterizes lifetimes of one-shot systems. Various quantal-response data of different sample sizes are simulated using lifetime data randomly sampled from assumed weibull distributions with different shape parameters but the identical scale parameter in this paper. Then, reliability estimation methods in open literature are applied to the simulated quantal-response data to estimate true reliability over time. Rankings in estimation accuracy for different sample sizes are determined using t-test of SSE. Furthermore, MSE at each time, including both bias and variance of estimated reliability metrics for each method are analyzed to investigate how much both bias and variance contribute the SSE. From the MSE analysis, MSE provides reliability estimation trend for each method. Parametric estimation method provides more accurate reliability estimation results than the other methods for most of sample sizes.